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Abstract: Quantum Cellular Automata are unitary maps that preserve locality and respect causality. | will show that in one spatial dimension they
correspond to matrix product unitary operators, and that one can classify them in the presence of symmetries, giving rise to phenomenon anal ogous
to symmetry protection. | will then show that in higher dimensions, they correspond to other tensor networks that fulfill an extra condition and
whose bond dimension does not grow with the system size. As aresult, they satisfy an area law for the entanglement entropy they can create. | will
also define other classes of non-unitary maps, the so-called quantum channels, that either respect causality or preserve locality and show that,
whereas the latter obey an area law for the amount of quantum correlations they can create, as measured by the quantum mutual information,
theformer may violate it. Additionally, neither of them can be expressed as tensor networks with a bond dimension that is independent of the system
size.
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CELLULAR AUTOMATA

Defined by simple local rules

Conway’s game of life

http://pi.math.cornell.edu

y
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QUANTUM CELLULAR AUTOMATA

/ e How to define them \

> Should include Classical Celullar Automata

> Obey the rules of Quantum Physics
> For unitary, there exists an accepted definition
» For general actions (channels)?

o Wy
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QUANTUM CELLULAR AUTOMATA

/ e How to define them \

> Should include Classical Celullar Automata

> Obey the rules of Quantum Physics
> For unitary, there exists an accepted definition
> For general actions (channels)?

o Define them in terms of Causality and Locality
e Connection to Tensor Networks

° Area laws

\\ * Classification /
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QUANTUM CELLULAR AUTOMATA

/ e How to define them \

> Should include Classical Celullar Automata

> Obey the rules of Quantum Physics
> For unitary, there exists an accepted definition
> For general actions (channels)?

o Define them in terms of Causality and Locality
e Connection to Tensor Networks

°* Area laws

\\ ¢ Classification Piroli, JIC, PRL 125, 190402 (2020) /
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QUANTUM CELLULAR AUTOMATA
N

>
/ Quantum (random?) walks: \

Aharonov, Davidovich, Zagury,PRA 48, 1687 (1993)

Eee{r;?ci”(%gsﬁ? Include the ,coin®
Grossing and Zeilinger (1988) -

Waltrous (1995)

Richter and Werner (1996)
Schumacher and Werner (2004)
Arrighi, Nesme and Werner (2008)

Several definitions:

\ .
Starting
position 1o
Random walks: single particle
Final TR : ~ U a2, v
position Lo ~ time step

Probability

NN

Lattice site

Dieter Meschede

Experiments with photons, atoms, etc/

K Medium.com / K
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CAUSALITY
4 | N

d>cot 7 \

For some time &t, the action in B cannot be sensed at A

b Yy
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CAUSALITY
4 | h

d>cot 7 \

For some time &t, the action in B cannot be sensed at A

Goal: Characterize the unitary operator U, describing the evolution of the
whole system for a time &, and that obeys causality
o Action in B, represented by u;: (1®u, )| ¥ (0))
° Evolution after a time or: |¥(51))=U (1®u,)|¥(0))

(-]

® The outcome of any measurement in any region A, separated d > d, = ¢ ot

\\ is independent of uy /
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CAUSALITY

-

o Action in B, represented by u,: (1®u,)| ¥ (0))

* Evolution after a time & | W (51))=U (1®u, )| ¥(0))

°* The outcome of any measurement in any region A, separated
d >d, =c ot, is independent of u,

(X ,)=(YO)|u U X ,Uu, | ¥(0))=(¥(0)|U'X,U|¥(0) independent of u,

~

\

for all X Y.
\
Characterization: y'x,u=X, forall x,
* X;is supported in A, the neighborhood of 4 Af&
(i.e., acting trivially, like the identity, outside A) K

* is in the Heisenberg picture
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LOCALITY

D

ool

Local action: it ,acts in the sorrounding®
it cannot correlate two separated regions

Goal: Characterize the unitary operator U, describing the evolution of the
whole system that obeys locality

o If we start with a product state of regions 4 and B: |¥) =¥ )®|¥;)
 Evolution after a time step: |YH=U|Y¥Y)

° We do not create correlations: (X, ®Y,)=(¥'| (X, Y, |V ") =(X XY}

y
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LATTICES & QUANTUM CHANNELS

* Discretize space and time

\

* General physical action: Quantum Channel

QCA
Po I:> P = E(po)

(physical action)

u 4
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LATTICE
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\

? =] 2 ? 2 2 2
o 9 =) ? ? 2 2
? > ? ? 2 2 2
o 9 -] ? ? 2 2
9 ? > o 9 2 aa
A
’ > ) 9 9 9 9
? =] ? 9 9 ? oY
. > =1 2 2 2 Y
o4 > =] 9 ? =Y b ?
- = -] =] =] 2 Y

Support of operators:
* Operator supported in A: X,
e Operator supported in A: X

* Operator supported in B: Y

2 2 ?
? 2 ?
B
2 2 9
2 2 9
2 Y )
> 9 ?
=] =) ?
2 2 2
2 ? ?
2 2 9

=X,01 81,31,
:XZ®1E:XAa®1b®15

:]Z®YE:1A®1a®YbB

Yy
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QUANTUM CHANNELS

4 )

Quantum
channel

Po =  p =E(p,)

It is a completely positve map
It is trace preserving

» Kraus representation

E(p)=> 4,p4] 1= 4/4,
k

» Adjoint channel:

E"(X)=) 4/X4, (Heisenberg picture)
k

* Relation: tr[X E(p)]=tr[ E'(X)p]

\ _{
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QUANTUM CHANNELS

4 A

Quantum
channel

Po :> P = E(po)

It is a completely positve map
It is trace preserving

> Kraus representation

E(p)=> 4,p4] 1= 4/4
k

» Adjoint channel:

E"(X)=) 4/X4, (Heisenberg picture)
k

* Relation: tr[X E(p)]=tr| E'(X)p|

e Unitary: E(p)=UpU’
\ Ef(X)=U"XxU /
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CAUSALITY PRESERVING QUANTUM CHANNELS

/ E is a CPQC if for any region A, and any X, \

E'(X,)=X;

The support is only extended in one unit
(in the Heisenberg picture)

aaaaaaaaaaaaaaa
aaaaaaaaaaaaaa
44444444444444
qqqqqqqqqqqqqq
44444444444444444
aaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa
4444444444444
aaaaaaaaaaaaaaa

ooooooooooooo

A Quantum Cellular Automaton (QCA) is a unitary CPQC
U'E U = X5

k This extends the definition of QCA to arbitrary actions /

Schumacher and Werner (2004), Arrighi, Nesme and Werner (2008)
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LOCALITY PRESERVING QUANTUM CHANNELS

>

E is a LPQC if for any region A, and any 055320

tr, , [E(p; ® ,0}7)} =0,Q0,

If there are no correlations between distant regions, A and B,
no correlations are created

? 9 > 2 -] 2
2 ? > 9 <@ @
B
> ) ? -] 2 > =)
? ) ? ? ? 9
-] 29 Q aa )
A

2 Y 2 9 9 =)
&) ? 9 ]
2 ] &) 2
2 @ b @ >
9 <@ =)

N

_{
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CHARACTERIZATION
Choi-Jamiolkowsky states

s
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QUANTUM CHANNELS

Quantum
channel

Po ,:> P = E(po)

U
Stinespring dilation —
| O @
E(ps) = tra |:Us+a (p\ ® O-a )UsT+a:| ps Ga

A channel can be viewed as interaction with environment

Yy
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\

Quantum
channel

Po ':> P = E(po)

Choi-Jamiolkowsky state

E &= R,.,

channel state

(isomorphism between channels and states)

° State: R, =(E®IL,)(®,,,) with @ =@ X" |

D7) =D n),®|n),
° Channel: E(p,) =tr, [P_,,TR.W]

E K
O@
system ancilla

Yy
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N

Choi-Jamiolkowsky state

E =) R,
channel state

(isomorphism between channels and states)

Multipartite systems:

E

(5 (5 (5 (5 (5 ) E system

| | | I I |

O O S S TS X SR

Characterization: s
RS-FLI Z O
R ., is a Choi state iff

tra Rs+a ) = 1s

[ @)

ancilla
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ccccccccc

ooooooooo

CHARACTERIZATION CHOI STATES G

..........

..... A a
BEEES, S8
/ 1. Causality Preserving Quantum Channels \
E is a CPQC if for any region A, and any X, Choi state
T 523
E (XA):XZ w @ W9
A a b’ B’
@ Y
@
tr, ;(R)=0,,®1, °0 oo
“ e Aa b B

A y
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aaaaaaaaaa

QUANTUM CHANNELS . pfER,

4444444444

,,,,, A. q
2 @ 9O o o o b; 2 > o
> E is a CPQC if for any region A, and any X,
i 4B 4
EV(XA):XZ J%J > )
A’a’b’B’ A’a’b’B’
> E is a LPQC if for any region A, and anyPz5 =0 L
Afa b)B . .
tr, , [E(pz ® pg)] =0,®0, e Tab B
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TENSOR NETWORKS
Quantum Channels
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TENSOR NETWORKS FOR UNITARY OPERATORS

4 A

MPU

PEPU

N

_HIJ_ —4}5~ a single tensor describes the whole operator

\ y
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TENSOR NETWORKS FOR UNITARY OPERATORS

4 A

MPU
N

PEPU

_HIJ_ —4}5~ a single tensor describes the whole operator
\\ One can similarly define Quantum Channels /
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, e
s
Simple: 4 a b B DD Y /)
JIC, Perez-Garcia, Schuch, Verstraete @ ) @
J. Stat. Mech. 083105 (2017)
| | | | | | | |
AT a'H b’ B AT a” b’ B®
| T T _I I_ I
| | - ¢ L |
Afre a4 bH B A a || L brH— B
[ [ [ [ [ | [ [
(O [y ] 1
—| — b B |_ AT a'tH—
c = d =
JA|
— — s B ¢ AR aH-
| | | L L

N _{
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/

\

imple:

Simple 4 a b B
JIC, Perez-Garcia, Schuch, Verstraete @ ) @
J. Stat. Mech. 083105 (2017) °

|
A a'H b’ B A a” b’ B*
| [ | _l I_ |
| | - ¢ & |
A atHH bH B A a || L brH— B
[ [ [ [ [ | [ [
gy I g [y
R [ a
C = d —
— — s B 4 A aH
] | | |

If it is simple, it is unitary (+details)
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TENSOR NETWORKS FOR CHOI STATES

-

\

PEPS

R 20

s+a

R .., is a Choi state iff «[

a

tr, (R,.,)=1,

/
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UNITARY CHANNELS
Quantum Cellular Automata
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4444444444

QUANTUM CELLULAR AUTOMATA T

aaaaaaaaaaa

aaaaaaaaaaa

aaaaaaaaaaaa

4 h

Result: Given a unitary channel, acting as

E(p)=UpU’

the following statements are equivalent:
i) E is a CPQC (Quantum Cellular Automaton)

i) Eis a LPQC

iii) E can be represented by a “"Simple” PEPU
where the bond dimension only depends on the local
dimensions and the coordination nhumber of the lattice

\ vy
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ooooooooooo

,,,,, A a
SEESNTBEN
Idea of the proof:
o Choi state [R,,)=(U®1,)|® ) ’/ A a b B
= S 2 U

e Maximally entangled state is a product state

| s+a s,ta, >

)=® |0

e Each state is annihilated by a Projector

Pld . )y=0

°* The Choi state is the unique ground state of the Hamiltonian

Local (U is LPQC)
H :U(ZPnj(f =Y UPU"=>"h,

>®N - 0

Commuting (A, ,h 1=0

m

s+a

\\ » Verstraete, Wolf, Perez-Garcia, JIC, PRL 96, 220601 (2006) /
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QUANTUM CELLULAR AUTOMATA

/

N

Remarks:

° Not all PEPUs are QCA U =—(1°% +ic?")

y
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QUANTUM CELLULAR AUTOMATA

P

\

Remarks:

° Not all PEPUs are QCA U 1V +ic?")

1
zﬁ(

e They must be ,simple"

In 1D JIC, Perez-Garcia, Schuch, Verstraete, J. Stat. Mech. 083105 (2017)

This is true in any dimension

y
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GENERAL CHANNELS
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aaaaaaaaaa

LOCALITY vs CAUSALITY PRESERVING LR
/ Result: For general channels, CPQC and LPQC are different \
CPQC LPQC
tr, ;(R)=0, 5 ®15 tr%b(R)ZUA,z-C@O'B,E'
is convex is not convex
tr, 5 (DR + p,R,)=6, 7. ®15, tr, (PR, + p,R,) #6; ;. ® G5

o vy
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LOCALITY vs CAUSALITY PRESERVING R
....... d
T BT
/ Result: For general channels, CPQC and LPQC are different \
CPQC LPQC
traﬁ(R):o-A’Z,(@lﬁ, tl‘a’b(R)ZGA’Z,(@GB’E.
is convex is not convex
tra’g(lel + p,R,) = (5“7, ® 15, tra,g(p]R1 + p,R,) # 5/7’;,, ® G
|
Example: E(p)za(p+0'f)Np0':®N)

\\ Requires classical communication /
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OTHER CHANNELS e - T

aaaaaaaaaa

aaaaaaaaaaaaaaa

aaaaaaaaaaaaaa

4 A

Subclasses of CPQC:

e Factorized Channels (fnQQC)
For unitary channels: Uv'x Yy, U =U'X U U'Y,U

E'{X,Y,)=E" (X )E"(Y,)

e Tensor Network Channels (tnQC)

They can be written as tensor networks

e Steinspring dilation Channels (dQC)

They can be obtained through a Stinespring dilation of a QCA

o Yy
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RELATION BETWEEN CHANNELS

t.nOOC'

CPQC

LPQC
dQC
fQC
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CPQC

EXAMPLES A

LPQC
tnQC | dQC
fQC

Example 1: E(p)= %(p—l— o—_%pa_f%)

o

It is CPQC and TnQC but not LPQC nor dQC
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CPQC

EXAMPLES A

tnQC = dQC |
\ fQC

P

Example 2: Consider a state |¥)= D, ¢, . |s....5)

,\‘1,%..5"\ =0,1
in any spatial dimension
I
1 |
(~ ] o (~ ] o o o
' I
' I
(*) Qo o (*) o Qo
(] o (* ] o ] o

\_ vy
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CPQC

EXAMPLES a i

tnQC / dQC
Qe

P

Example 2: Consider a state |¥)= > ¢, . |S..0sy)

81 5eenst sy =0.1
in any spatial dimension
1 |
Qo o Qo Qo o 9
; | | It is not a ,,tensor network™
- ) (] o o (~ ] (* ]
(~ ] ) (* ] (~ ] o Qo

Choi state: R=1+k, > ¢, [®f,v_1 (a;‘ o )S (g; ® o’ )”"}
=0,1

S15e-8y =U,

\ It is an LPQC but not tnQC nor dQC /
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AREA LAW

4 )

Definition: A sequence of QC obeys an area law if for all A, the state
obtained by applying the channel to any product state fulfills

I(A:A4°)<c|o4|

[ is the quantum mutual information: 7(4: 4°) =S, +8,.-8, .

Results: o

b © . LPQC

* LPQC and tnQC obey an area law woo Qe

* CPQC do not obey an area law in general

b Y
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CPQC

EXAMPLES >

tnQC | dQC |
\ fQC

/ Example 3: Consider a state E =®E \

n,n+e

in any spatial dimension

E,u(p) =3[ p+(0:®0%)p(0: @3]

=

° ° ° ° ° °
[
' I
! I
o ° ° ° ° °
° o ° ° ° °

vy
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Classification of QCA on 1D:

Index theorem:
Gross, Nesme, Vogts, Werner, Comm. Math. Phys. 310, 419 (2012)

®

* MPU:
JIC, Perez-Garcia, Schuch, Verstraete, J. Stat. Mech. 083105 (2017)

® Symmetries:
Gong, Sunderhauf, Schuch, JIC, PRL 124, 100402 (2017)

°* Fermions:
Po, Fidkowski, Vishwanath, Pot-ter, PRB 96, 245116 (2017)

®

fMPU:
Piroli, Turzillo, Shukla, JIC, arXiv:2007.11905

/
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CONSTRUCTION

P

N

* Take an LME state (eg stabilizer)
Kruszynska, Kraus, PRA 79, 052304 (2009)

o—0——O0—0—90—90

o Locally entangle it to ancillas locally, so that it is maximally entangled

B ]
(+) (] o () o [~ ]
Choi state

v

The state is a Choi state that inherits the properties of the original state

v

The corresponding unitary as well

v

Define unitaries with topological order

v

They can be deterministically applied given the Choi state

v

Extension of LOCC to geometries

Yy

Pirsa: 20110022

Page 47/48




CONCLUSIONS

v

Extended QCA to channels
Two different definitions: CPQC and LPQC
Connected QCA and LPQC with TN

v

v

v

Proven area laws

Classification of QCA and other PEPU

v
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