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of the Rankine—Hugoniol ¢ 1ons (see Section 1 1.8} that govern the form and speed of
shock 25, It thus makes sense that a conservative method based on the integral form
might be more successful than ather methods based on the differential equation. In fact, w
will see that the use of conservative finite volume methods s essential in computing weak
solutions 1o conservation laws, Nonconservative methods can Fail, as illustrated below, With
conservative methods, one has the satisfaction of knowing that if the method converges w
some limiting function as the grid is refined. then this function is a weak solution. This is
further explained and proved in Section 12,10 in the form of the Lax-Wendroff theaor

In Section 12,11 we will see that similar ideas can be used o show that the limiting
function alse satisfies the entropy condition, provided the numerical method satisfies a
natural diserete version of the entropy condition

Consider Burgers” equation 4, 4 S(u’), =0, for example. If u > 0 everywhere, then the

conservative upwind method {Godunoy's method) takes the form
(12.24)

O the other hand, vsing the guasilinear form w, + i {1, we could derive the noncon
servative upwind method
A
L ey ; (12.15)
Ax i d
On smaooth solutions, both of these methods are rst-order accurate, and they give compara
ble results. When the solution contains a shock wave, the method {12.25) fails to conve
aweak solution of the conservation low, This is illustrated in Figure 12,5 The conservative
method (12.24) gives a slightly smeaned approximation to the shock, bat it is smeared about
the correct location. We can easily see that it must be, since the method has the discrete
conservation property (4.8). The nonconservative methad (12.23), on the er hand, gives

the resulis she in Figure 12.5(b). These clearly do not satisfy (4.8), and as the grid is

and ¢ uation with data w 2
)

shown at time 1 = 2: ng the conservative method (12,24, (bj using the n servalive

o (12 2 hook 12/nonconservativa)
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some limiting Tunction as the grid is refined, then this function is a weak solution, This 15

further explained and proved in Section 12,10 in the form of the Lax—Wendroff theorem.
In Section 12,11 we will see that similar ideas can be used to show that the limiting
function also satisfics the entropy condition, provided the numerical method satisfies a

natural discrete version of the entropy condition

Consider Burgers’ equation w, + 5(u~), =0, for example. If i > 0 everywhere, then the

conservative upwind method (Godunov's method) takes the form

Ar 1 y
i | o { i
S (2“'-]

. 3 )

ri 17
EL_!, 1) J (12.24)
On the other hand, using the quasilinear form u, + wu, =0, we could derive the noncon-
servative upwind method

Mf_{f. - ik (12.25)

On smooth solutions, both of these methods are first-order accurate, and they give compara
ble results. When the solution contains a shock wave, the method (12.25) fails to converge to
a weak solution of the conservation law. This is illustrated in Figure 12.5. The conservative
method (12.24) gives a slightly smeared approximation to the shock, but it is smeared about
the correct location. We can easily see that it must be, since the method has the discrete
conservation property {4.8). The nonconservative method (12.25), on the other hand, gives

the results shown in Figure 12.5(b). These clearly do not satisty (4.8}, and as the grid is

I LI RIT AT T

TR 1 i I

[a) [h)

2 I'rue and computed solutions to a Riemann problem for Burgers” equation with data w) = 2,

i, = 1. shown attime ¢ = 2t (a) using the conservative method (12.24), (b using the nonconservative
method (12.25). [claw/book/chapl2/nenconservative]
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some limiting function as the grid is refined, then this function is a weak solution, This is
further explained and proved in Section 12,10 in the form of the Lax—Wendroff theorem.

In Section 12,11 we will see that similar ideas can be used to show that the himiting
function also satisfics the entropy condition, provided the numerical method satisfies a
natural discrete version of the entropy condition

Consider Burgers’ equation u, 4 Luty, =0, for example. If i > 0 everywhere, then the

conservalive upwind method (Godunov's method) takes the form

Ar 1] ;
[ I - f.'.n'l ( _>|:f'-,“_]

o }"] (12.24)
Ax Wit | A

)
On the other hand, using the quasilinear form «, + ww, =0, we could derive the noncon-
servative upwind method

pr =g = By _ g ), (12.25)

: Ay

On smooth solutions, both of these methods are first-order accurate, and they give compara
ble results. When the solution contains a shock wave, the method (12.25) fails to converge to
a weak solution of the conservation law. This is illustrated in Figure 12.5. The conservative
method (12.24) gives a slightly smeared approximation to the shock, but it is smeared about
the correct location. We can easily see that it must be, since the method has the discrete
conservation property {4.8). The nonconservative method (12.25), on the other hand, gives

the results shown in Figure 12.5(b). These clearly do not satisty (4.8}, and as the grid is

ot TS U e e 0 PRl R e R S S e B e s

A THIHIHIE ] i

[a) [h)

2 I'rue and computed solutions to a Riemann problem for Burgers” equation with data u
i, = 1. shown attime ¢ = 2:(a) using the conservative method (12.24), (b using the nonconservative
method (12.25). [claw/book/chapl2/nenconservative]



9:41 AM  Tue Jan 9

< B AQ QA M Lecture_17 =

acture_17 Laciura 18
=i 4 P
d / £ 7 £/ ol i o
A, 5 G

L

q?gmm ol Cls u +#»~),,~O ond DA
gec“(lz RV sud ot g (vv) =

\b‘vefz_[d- L&Aﬂiimﬂd%“
Uparnreal. CJZL@M{M @2 eUniP {’bm Trgan

K 2 sand fo sahsfy o olzcrede QM%’E(%_
gl om ﬂc"

TO) - B £ -0 2[4, ws
~ & (Usma uffﬂ
— (-9 & |6 i)

—




9:41AM Tue Jan 9 > 52% .
< B QN M Lecture_17 ~ S o X e

arpura_ 16 ® Chap_f NumericalSchem

A //C‘ ' .:L\.'- ch / = B) = v;;
W‘tﬁﬂ TM W W!M% %b_rvw M

W 2 sawd o S‘mtﬂf\‘(? a  ohzerede Qgﬁ‘ﬂﬁg,
_mdﬁk‘@i« 1:

™) - Bw) £ -8 [ ¢ (!, wl

@2mﬁ@e@? W‘Q‘“U_ﬁ Wﬁm s, Tle
cobgonl 3 sk o ho chens ot A He

pbeopy bt . ) Lolds

U.me for 26 L — 0 {f}rwwa
8 od &




9:41 AM Tue Jan 9 B 54% .

< B QN M Lecture_17 ~ S o X e

0 S L &L BE o m e e - - =
%7) + wtd kg

S ~ (0 & )47 )
& TEY I

B (U“A"FA &IJ.,_" )

& B %_M DMMWU thnse. Tla
S“_C.E\_I:Mﬂ- N sael Jo Lﬂcﬂ-mmi‘@u)d‘ m_éé\ g

-

fzw\w-om O S Y VR “l_ Qéﬁ) Lolds

UAM“E@‘\"W% fo ab sXx — 0 ?{gﬁro_m‘a,
T od G.

M(W NP MTEPN&
QU&JL‘QM)'. Carnalle ;M%oi;
loac — Vemdoff Pspienn omdk anpemg
Yok o clowa T chssled At Hu
Mm gl g, Tlonm He solwrat

W Jo a wealc st ok
catslen Hu L«u{wff% codh .




9:41 AM  Tue Jan 2

< B A Q Lecture_17 ~

Lecture 17

U L a2 SYCQL&M/) @éCLs

Mgé‘?\hﬁlﬁ%"t




2:41 AM Tue Jan 3 3 = 58% .

< B A QM Lecture_17 = S o X e

Lecture_17 _eshira 16 % Chap_B NumericalSchem

g / \’\, , hl EJ] (3] T \/ - ] ® — - =
U sy SyStenns 0f Cls

Motrmbtm:  Lowd  cormtamfie golitine Kot
dads it M lo tloasade dacdntiwmies

ok rodlr paplols

ldia:  REA:  reeswrtonof — pvobot — avtrae
1, Rochorbrvet o precanie prluyupsial
Jusedon 0 (xF7) frivn guen okl -
OLRroapnd U]
— swm?(ﬂ/# AL DFeef- N'Se cgrrtent
frrct

" :
LKML"‘Q‘E;U\) = Ut‘,: 15‘('\:_1_4}{5 X,L'Ml
2 2



9:41 AM  Tue Jan 8

< 8 Q [ ¢ Lecture_17 =

A _ L
Whedt?) = Uy (X 1 2xe%u
2 2

2. Epplot ¥ syl v Cls MJ@&
(or WFWHM%%) i Hx Dwhel
lada do okl w (x4
ok LM ot = £ (e of oo

roblovs )

du-mmwmfﬁoaﬁrj‘ﬂ/)

~ A A
u'{ = 5‘.';, EU: + A ()«'L-f':nﬂ) aLk
Ka="

ol stat pee B sip A,




9:41 AM  Tue Jan 8

< B A QM Lecture_17 =

Lecture_17 Lesiire 16 % Chap_B _NumericalSchem

/ & Vi g T

-

osl- %“4—.{5‘!‘::'6% :

5. Average W%Wﬁ“"{w‘f”
O\,J-MMMCQM

e '1?:

w4 - VA
U; = 5;‘( glﬁ.“ (™) ol
ot

L~

ol sttt A skp A,

l dhad:  spbal grd of fanie
whatn:  Tp = Dot iees |

T




9:41AM Tue Jan 8 R
< B A QM Lecture_17 = S o X e

Lecture 17 Leciure 16 ® Chap_ B _NumericalSchem * Lewague - Finite Volume M

/ \ <& & A T : / o ® - - =

| dehel: QPJWJZ grd of Lok
vobwen: T o= Ly Lhnrs\_\

1=

o ()

——u




9:41 AM  Tue Jan 9

< B QA M

Lacture 17

v
W

Dicguntinct Pﬂc@mw Chtandd  furelagm
u“(m{w) e H: J(]ﬁ"' xé[éc,e_bx“ﬂ




9:41 AM  Tue Jan 9 B 7 G4%: -

< B A QA M Lecture_17 = S o K e

Lecture_17 ture 16

1

wxt') = W

i 4

v TFoc toeh (g,

@wﬁrﬂ%«

MJJ-E' ﬁm\r =0

— bl arast (gragpeiad
alodbipn W

£



9:41 AM  Tue Jan 9 B 7 G5Y -

< B aAQ [ Lecture_17 -

Lacture_17

ostdigan Wy (o)

) DE.L@JL\_P_ Mmﬁ o5lndprn
t'et 24
Xo & x4 3(.'.{4.4-?_
bt Laptast M SMS m‘:"f«
,\‘((u:) & §£+4£r < )\l( (.M:;A)

w1

V' (et) = WS (L)




9:41 AM  Tue Jan 9

< B a [ Lecture_17 =

Lacture_17

Milm [ etn \wi}

Qq:L QAu Miﬂ%




