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Abstract: A standard account of the measurement chain in quantum mechanics involves a probe (itself a quantum system) coupled temporarily to the
system of interest. Once the coupling is removed, the probe is measured and the results are interpreted as the measurement of a system observable.
Measurement schemes of this type have been studied extensively in Quantum Measurement Theory, but they are rarely discussed in the context of
quantum fields and still less on curved spacetimes.& nbsp;

In this talk 1 will describe how measurement schemes may be formulated for quantum fields on curved spacetime within the general setting of
algebraic QFT. This alows the discussion of the localisation and properties of the system observable induced by a probe measurement, and the way
in which a system state can be updated thereafter. The framework is local and fully covariant, allowing the consistent description of measurements

made in spacelike separated regions. Furthermore, specific models can be given in which the framework may be exemplified by concrete
calculations.

| will also explain how this framework can shed light on an old problem due to Sorkin concerning "impossible measurements' in which
measurement apparently conflicts with causality.

The talk is based on work with Rainer Verch [Leipzig], (Comm. Math. Phys. 378, 851&€"889(2020), arXiv:1810.06512; see also arXiv:1904.06944
for asummary) and a recent preprint arXiv:2003.04660 with Henning Bostelmann and Maximilian H. Ruep [Y ork].
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A gap in the literature

Measurement theory in quantum mechanics has a long and controversial history.

Nonetheless:

» simple rules are taught to students
» measurement chain is analysed in quantum measurement theory.

Much less is said in quantum field theory.

» Lecture courses and texts are silent.
» QMT rarely discussed for QFT; still less in curved spacetimes.

» Algebraic QFT is founded on the idea of focal observables,
but little discussion of how they are actually measured.

CJ Fewster University of York Measurement for QFT in CST
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In this talk...

Analyse the measurement chain in QFT
Provide a general operational framework for measurement
Covariant; applies in curved as well as flat spacetime

Passes consistency tests

vvyYVvyyVvyy

Can be used for calculation

CJ Fewster University of York Measurement for QFT in CST 3/21
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Relativity, quantum theory and measurement — it's complicated

c < 00 measurements occupy bounded Reporting
spacetime regions

Funding
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Relativity, quantum theory and measurement — it's complicated

c < 00 measurements occupy bounded
spacetime regions

h >0 ...but are not performed at points AEA t Z h
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Relativity, quantum theory and measurement — it's complicated

c < 00 measurements occupy bounded
spacetime regions

h>0 ...but are not performed at points
Reduced state

Lorentz invariance no preferred frame .
no instantaneous collapse at constant t

Original state
Hellwig & Kraus
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Relativity, quantum theory and measurement — it's complicated

c < 00 measurements occupy bounded
spacetime regions

h>0 ...but are not performed at points
Reduced state

Lorentz invariance no preferred frame
no instantaneous collapse at constant t
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Relativity, quantum theory and measurement — it's complicated

c < 00 measurements occupy bounded
spacetime regions

h>0 ...but are not performed at points
Lorentz invariance no preferred frame
no instantaneous collapse at constant t
Relativity of no preferred order for @ ©
simultaneity spacelike separated measurements
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Relativity, quantum theory and measurement — it's complicated

ol e &

h>0

Lorentz invariance
Relativity of
simultaneity

Curved spacetime

Pirsa: 20100069

measurements occupy bounded
spacetime regions

...but are not performed at points

no preferred frame
no instantaneous collapse at constant t

no preferred order for
spacelike separated measurements

lack of symmetry, nontrivial topology...

Ligo
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Relativity, quantum theory and measurement — it's complicated

c < 00 measurements occupy bounded
spacetime regions

h>0 ...but are not performed at points

Lorentz invariance no preferred frame
no instantaneous collapse at constant t

Relativity of no preferred order for
simultaneity spacelike separated measurements

- . - %
Curved spacetime lack of symmetry, nontrivial topology...

Ligo

Extension of QM measurement rules to QFT is nontrivial and risks pathology
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Impossible measurements Sorkin 1993

‘By hand’ extension of QM rules to QFT

Claim: nonselective measurement of a typical observable B allows C to determine
whether A has conducted a measurement — superluminal communication.
Presumably, therefore, B represents an impossible measurement.

CJ Fewster University of York Measurement for QFT in CST 521
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Impossible measurements Sorkin 1993

‘By hand’ extension of QM rules to QFT

“[l]t becomes a priori unclear, for quantum field theory, which observables can be
measured consistently with causality and which can't.

This would seem to deprive [QFT] of any definite measurement theory, leaving the
issue of what can actually be measured to (at best) a case-by-case analysis”

See e.g., Borsten, Jubb, Kells (2019) for such an analysis.

Measurement for QFT in CST

CJ Fewster University of York
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Impossible measurements Sorkin 1993

‘By hand’ extension of QM rules to QFT

“[l]t becomes a priori unclear, for quantum field theory, which observables can be
measured consistently with causality and which can't.

This would seem to deprive [QFT] of any definite measurement theory, leaving the
issue of what can actually be measured to (at best) a case-by-case analysis”

See e.g., Borsten, Jubb, Kells (2019)for such an analysis.
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Operational approach CJF & Verch, 2018

Instead of constructing rules for QFT de novo, apply a systematic approach by
modelling the measurement process.

CJ Fewster University of York Measurement for QFT in CST 6/21
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Operational approach CJF & Verch, 2018

A QFT (system) is coupled to another QFT (probe) in a compact spacetime region K
(a proxy for the experimental design). The probe is measured elsewhere.

Measure probe

' &
() (07

’ \ Lint = 1020102 provides a tunable

Prepare system and probe localised coupling between ¢1 and ¢s.

Measurement for QFT in CST

CJ Fewster University of York
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Operational approach CJF & Verch, 2018

.
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A QFT (system) is coupled to another QFT (probe) in a compact spacetime region K 1
(a proxy for the experimental design). The probe is measured elsewhere.

Measure probe Updated state
; ? N

& Hypothetical

~J local system

measurement

7 A

Prepare system and probe Prepare system
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Operational approach CJF & Verch, 2018

A QFT (system) is coupled to another QFT (probe) in a compact spacetime region K
(a proxy for the experimental design). The probe is measured elsewhere.

Measure probe Updated state

Apparent circularity: How do you measure the probe?
Quis metietur ipsos mensores?

Working hypothesis: Someone, somewhere, knows how to measure something.

7 A |

Prepare system and probe Prepare system
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Operational approach CJF & Verch, 2018

A QFT (system) is coupled to another QFT (probe) in a compact spacetime region K
(a proxy for the experimental design). The probe is measured elsewhere.

Measure probe Updated state

Apparent circularity: How do you measure the probe?
Quis metietur ipsos mensoresl?

Working hypothesis: Someone, somewhere, knows how to measure something.

7 A

Prepare system and probe Prepare system
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Algebraic QFT - quickstart (See arXiv:1904.04051 for a pedagogical intro)

Describe a QFT on M in terms of a *-algebra A(M) with unit, together with
subalgebras A (M; ) for suitable open regions N C M. (A(M; M) = A(M))

A+AB, AB, A, 1

CJ Fewster University of York Measurement for QFT in CST 7/21
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Algebraic QFT — quickstart (See arxiv:1904.04051 for a pedagogical intro)

Describe a QFT on M in terms of a *-algebra A(M) with unit, together with
subalgebras A(M; N) for suitable open regions N C M. (A(M; M) = A(M))

Typical elements of A(M; N) include smeared fields
d(f) e A(M; N)  if f =0 outside N

i

CJ Fewster University of York Measurement for QFT in CST
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Algebraic QFT — quickstart (See arxiv:1904.04051 for a pedagogical intro)

Describe a QFT on M in terms of a *-algebra A(M) with unit, together with
subalgebras A(M; N) for suitable open regions N C M. (A(M; M) = A(M))

Terms and conditions apply
» Vi C N, = A(M, N1) C.A(M; Ng) Isotony
> A(M; N) = A(M) if N contains a Cauchy surface of M Timeslice
> ...
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Algebraic QFT — quickstart (See arxiv:1904.04051 for a pedagogical intro)

iR

Describe a QFT on M in terms of a #-algebra A(M) with unit, together with i

subalgebras A(M; N) for suitable open regions N C M. (A(M; M) = A(M))

Terms and conditions apply
» Vi C N, = A(M, N1) C.A(M; Ng) Isotony
> A(M; N) = A(M) if N contains a Cauchy surface of M Timeslice
> ... N
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Algebraic QFT — quickstart (See arxiv:1904.04051 for a pedagogical intro)

Describe a QFT on M in terms of a *-algebra A(M) with unit, together with
subalgebras A(M; N) for suitable open regions N C M. (A(M; M) = A(M))

Terms and conditions apply
» Ny C Ny = A(M; Np) C A(M; Ny) Isotony
» A(M; N) = A(M) if N contains a Cauchy surface of M Timeslice

Self-adjoint elements of A(M; N) are interpreted as observables localisable in V.
An observable may be localisable in many distinct regions.
N
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Algebraic QFT — quickstart (See arxiv:1904.04051 for a pedagogical intro)

Describe a QFT on M in terms of a *-algebra A(M) with unit, together with
subalgebras A(M; N) for suitable open regions N C M. (A(M; M) = A(M))

Terms and conditions apply
» Ny C Ny = A(M; Np) C A(M; Ny) Isotony
» A(M; N) = A(M) if N contains a Cauchy surface of M Timeslice

Self-adjoint elements of A(M; N) are interpreted as observables localisable in V.
An observable may be localisable in many distinct regions.

A state is a map w : A(M) — C, assigning expectation valuesw(A) to A € A(M).
w is linear and obeys w(1) = 1, w(A*A) > 0.
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Algebraic QFT — quickstart (See arxiv:1904.04051 for a pedagogical intro)

Describe a QFT on M in terms of a *-algebra A(M) with unit, together with
subalgebras A(M; N) for suitable open regions N C M. (A(M; M) = A(M))

Terms and conditions appI)T/
» Ny C Ny = A(M; Np) C A(M; Ny) Isotony
» A(M; N) = A(M) if N contains a Cauchy surface of M Timeslice

Self-adjoint elements of A(M; N) are interpreted as observables localisable in V.
An observable may be localisable in many distinct regions.

A state is a map w : A(M) — C, assigning expectation values w(A) to A € A(M).
w is linear and obeys w(1) = 1, w(A*A) > 0.

NB No specific Lagrangian has been assumed.

CJ Fewster University of York Measurement for QFT in CST 2
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QOutline of the idea

Describe the system and probe by QFTs A, B on spacetime M (globally hyperbolic).
A(M) is the algebra of system observables on M. We compare

» the uncoupled combination ¢/ of A and B
UM; N) =A(M; N) 2 B(M; N)
» a coupled combination € with compact coupling region K.

Minimal assumption on C:
C(M; L)=U(M,;L) VL outside the causal hull ch (K),

and the isomorphisms are compatible with isotony.

Measurement for QFT in CST

CJ Fewster University of York
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QOutline of the idea

Describe the system and probe by QFTs A, B on spacetime M (globally hyperbolic).
A(M) is the algebra of system observables on M. We compare

» the uncoupled combination ¢/ of A and B
» a coupled combination € with compact coupling region K.

Define geometrical ‘in’/‘out’ regions M~/ on which I/ and € agree.

M* = M\ JF(K) M+

CJ Fewster University of York Measurement for QFT in CST 8/21
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Outline of the idea

Describe the system and probe by QFTs A, B on spacetime M (globally hyperbolic).
A(M) is the algebra of system observables on M. We compare

» the uncoupled combination ¢/ of A and B
» a coupled combination € with compact coupling region K.
Define geometrical ‘in’/‘out’ regions M~/ on which I/ and € agree.

M% contain Cauchy surfaces = 3 isomorphisms 7= : U(M) — C(M).

I ——
ME = M\ J¥(K) M+

U(M) = U(M; M*)I= e(M; M*) = (M)

M-
— = 4

CJ Fewster University of York Measurement for QFT in CST 8/21
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QOutline of the idea

- N\

Describe the system and probe by QFTs A, B on spacetime M (globally hyperbolic).
A(M) is the algebra of system observables on M. We compare

» the uncoupled combination ¢/ of A and B

» a coupled combination € with compact coupling region K.
Define geometrical ‘in’/‘out’ regions M~/ on which I/ and € agree.
M% contain Cauchy surfaces = 3 isomorphisms 7= : U(M) — C(M).

Combining 7%, we define a scattering operator
SE (T_)_Il o7t € Aut(U(M))

Locality property: © [U(M; N) =id, if N C K+,

CJ Fewster University of York Measurement for QFT in CST 8/21
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Measurement scheme: prepare early, measure late
7% translate fictitious uncoupled language to the physical coupled system.

» ‘Prepare system and probe in states w and o at early times'’
The uncoupled state w ® o on U(M) corresponds to the state of C(M),

wo = ((17) )" (w®o) wo(X) = (wea)((r7) ' X)

» ‘Measure a probe observable B at late times'’
Probe observable 1 ® B in U(M) corresponds to observable

B:=77(1®B) e (M)

» The actual measurement of B in state w, corresponds to a fictitious measurement
of induced system observable A € A(M) in state w so that

w(A) = wo(B)

CJ Fewster University of York Measurement for QFT in CST 9/21
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Measurement scheme: prepare early, measure late
7% translate fictitious uncoupled language to the physical coupled system.

» ‘Prepare system and probe in states w and o at early times'’
The uncoupled state w ® o on U(M) corresponds to the state of C(M),

Explicitly, A=c,(B)E 1,(0(1 ® B))

where 7, : A(M) @ B(M) — A(M) linearly extends P ® Q — o(Q)P.

» The actual measurement of B in state w, corresponds to a fictitious measurement
of induced system observable A € A(M) in state w so that

W(A) = w, (B).

CJ Fewster University of York Measurement for QFT in CST 9/21
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Induced system observables — localisation

Recall: © acts trivially on U(M; L) if L € K+, <L>
Theorem (a) If B € B(M; L) with L C K+ then £,(B) = o(B)1.
(b) If A obeys a Haag property, then

es(B) € A(M; N) for all B € B(M),
where N is any open connected causally convex set containing K. ;

NB N must contain ch K. The localisation of B is irrelevant.

CJ Fewster University of York Measurement for QFT in CST 10/21
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Induced system observables — fluctuations

True and hypothetical expectation values agree, by construction

P

we(B) = w(es(B)) for all B € B(M).
£o 1 B(M) — A(M) is linear, completely positive, and obeys
es(1) =1, gx B =B}, es(B) ey (B) < e,(B*B).

Consequently, the true measurement displays greater variance than the hypothetical
one due to detector fluctuations

Var(B; ws) > Var(e4(B); w).

CJ Fewster University of York Measurement for QFT in CST 11/21
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Effects

An effect is an observable s.t. B and 1 — B are positive,
corresponding to a true/false measurement

Prob(B | w) = w(B), Prob(—B | w) =w(1 — B).

I

Unsharp unless B is a projection.

Because ¢, is completely positive, but not a homomorphism in general:

» probe effects induce system effects

» system effects are typically unsharp, even for sharp probe effects.

CJ Fewster University of York Measurement for QFT in CST
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Summary so far

To every local probe observable B and probe preparation state o there is an
induced system observable, €,(B) which can be localised in any connected region
containing the causal hull of K.

= JT(K)NJ7(K)

Expectation values of the true and hypothetical measurements match, but the true
measurement has greater variance.

Probe observables localisable in K- induce trivial system observables.
N

CJ Fewster University of York Measurement for QFT in CST 13/21

Pirsa: 20100069 Page 36/55



Summary so far

To every local probe observable B and probe preparation state o there is an
induced system observable, €,(B) which can be localised in any connected region
containing the causal hull of K.

= JT(K)NJ7(K)

Expectation values of the true and hypothetical measurements match, but the true
measurement has greater variance.

Justifies regarding A € A(MI' L) as ‘measureable within' L in the sense that the system
and probe are coupled there.

CJ Fewster University of York Measurement for QFT in CST
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State update rules

How should the instantaneous collapse rule of QM be carried over to QFT in CST?

CJ Fewster University of York Measurement for QFT in CST 14 /21
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State update rules

Operational ideology: the purpose of state updates is to facilitate predictions.

CJ Fewster University of York Measurement for QFT in CST 14 /21
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State updates — two probes CJF + Verch; CJF 4+ Bostelmann & Ruep

Consider two independent probes coupled to the system, each measuring an effect.

The probes can be regarded as a single ‘super-probe’ and the effects A, B can be
combined as the effect A& B (success of both) given by A® B.

The expectation of B conditioned on successful measurement of A is

E(A&B; w)

E(BIA @) = Brobla w)

NB The RHS involves outcomes for a single probe; already understood.
b

E(B|A;w) = (w®oa®oB)(Oas(l® AR B))

(w®0a)(©a(1® A))
where © 4p is the scattering map for the combined probe, and ©4 that for A alone.

CJ Fewster University of York Measurement for QFT in CST 15/21
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Causal factorisation and the update rule
Two coupling regions separated by a Cauchy surface are causally orderable.

— _©

(KD ey

N regions are causally orderable if they may be labelled Ki, ..., Ky so that
K, lies to the past of a Cauchy surface separating it from K41

foralll<n<N-1.

Any such labelling defines a compatible causal order; write K; < K> <+ - - a Ky,.

CJ Fewster University of York Measurement for QFT in CST 16 /21
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Causal factorisation and the update rule

Two coupling regions separated by a Cauchy surface are causally orderable.
Causal factorisation: if K4 < Kg w.r.t. some compatible causal order,

O =0 4005= (©a®id) o (O ®yid)

Consequence: if K4 and Kg are spacelike then (:)A and ég commute.

Under this assumption, and for K4 < Kp,

(w®0oa)(©a(C® A))
(w®@0a)(©a(l @ A))

E(B|A;w) = (wa® 0g)(©s(1 ® B)) = E(B; wa); il =

NB w4 is independent of B, og and ©g.

This justifies the state update rule w — w4 given a successful measurement of A.

CJ Fewster University of York Measurement for QFT in CST 16 /21
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Causal factorisation and the update rule

Two coupling regions separated bv a Canchv surface are causally orderable.
Causal factoric=*"

It is not necessary to assume that the state actually changes.

The update rule conveniently does the book-keeping needed to compute the
conditional expectation, given additional knowledge from the A-measurement.

~

Under this assu..,

E(B|A;w) = (wa® 08)(Os(1 ® B)) = E(B;wa); 1 wa(C) = (w®aa)(©a(C® A))

(w®@0a)(©a(l @ A))

NB w4 is independent of B, og and ©g.

This justifies the state update rule w — w4 given a successful measurement of A.

CJ Fewster University of York Measurement for QFT in CST 16 /21
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Properties of the update rule

Unspooky action at a distance
Theorem For B localisable in K3, wa(B) = w(B) iff B is uncorrelated with £,(A) in w.

Consistency For two updates at spacelike separation
(wa)s = (wB)a
Multiple causally orderable probes Assuming causal factorisation (suitably extended)
E(B|A1&A & - - - &An;w) = E(B; ((wa,)a,)--Ay)

if effects A1, ... Ay are measured by causally orderable probes with Ky <--- 1Ky < Kp.
(Valid for any compatible causal ordering.)

CJ Fewster University of York Measurement for QFT in CST 17/21
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Nonselective measurement

If no selection is made on the results of A, the updated state is a convex combination
of wa and w_x

wi™(C) =(w®0a)(Ca(C ® A)) + (w® 0a)(Ca(C @ (1 - A)))
= (w®0a)(@a(C®1))

which is independent of A.

Measurement for QFT in CST

CJ Fewster University of York
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Nonselective measurement

If no selection is made on the results of A, the updated state is a convex combination
of wp and w-_x

wi™(C) = (w®aa)(Ca(C ® A)) + (w® 0a)(Ca(C @ (1 - A)))
= (w®0a)(@a(C®1))

which is independent of A.

The principle of blissful ignorance

Theorem wh*(B) = w(B) for all B localisable in K3

CJ Fewster University of York Measurement for QFT in CST 18/21
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Multiple nonselective measurements

Consider causally orderable probes with

Ka, <-4 Ka, <Kg<dKg <+ a4 K,

1

Effects A1,...,Apm, C1, ..., Cy are measured without selection.

B(6;w) = E(B; (@5 )5)55)

2

» Use the updated state for the nonselective measurements in the past of Kg
(according to any compatible ordering).

» Nonselective measurements to the future (in some compatible order) may be
ignored (just as well).

CJ Fewster University of York Measurement for QFT in CST 19/21
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Impossible measurements? Bostelmann, CJF & Ruep arXiv:2003.04660

» Alice chooses whether to make a nonselective measurement
» Bob certainly makes a nonselective measurement

» Can Charlie determine whether Alice performed the measurement?

W35(C) # w*(C)

CJ Fewster University of York Measurement for QFT in CST 20/21
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Impossible measurements? Bostelmann, CJF & Ruep arXiv:2003.04660

Model A and B measurements using probes

Mote detailed investigation of scattering map locality properties gives

OsC®1®1ecU(M;N) for region N C Ky N Mg

Consequently, Charlie cannot determine whether Alice has measured:

wiE(C) = (wRoa®05)(0405C2181) = (WRoAR0E)(OsCR1®1) = WE*(C)

CJ Fewster University of York Measurement for QFT in CST 20/21
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Impossible measurements? Bostelmann, CJF & Ruep arXiv:2003.04660
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Model A and B measurements using probes

The analysis shows that the measurement scheme is free of Sorkin-type pathologies.
Key assumption — the probes and couplings are described by physics respecting locality.

Impossible measurements can only be performed using impossible apparatus.

CJ Fewster University of York Measurement for QFT in CST 20/21
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Summary

» Operational framework of QMT adapted to AQFT

» covariant, formulated for curved as well as flat spacetimes
» derived from minimal assumptions

» Probe observables induce local system observables
» localisable in the causal hull of coupling region
» State update rules

» derived from required properties rather than posited
» consistent for any compatible causal ordering of multiple probes
» principle of blissful ignorance

» Framework is free of impossible measurements
T

» Induced observables have been computed for a specific model (bonus slides)

CJ Fewster University of York Measurement for QFT in CST 21/21
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A specific probe model

Two free scalar fields: ® (system) and W (probe) coupled via an interaction term

L
Line = —p®V,  pe (M),  K=suppp.

Linear equations: standard quantisation applies at least for sufficiently weak coupling.

As formal power series in h € C§°(M™), @
O(1® eV(h) — ¢/®(f7) g MW(h")

where f~ and h™ — h are supported in
supp p N J~(supp h).
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A specific probe model

Two free scalar fields: ® (system) and W (probe) coupled via an interaction term
Ling = —p®V,  pe G- (M),  K=suppp.

Linear equations: standard quantisation applies at least for sufficiently weak coupling.

As formal power series in h € C§°(M™), @
O(1® eV(h) — ¢/®(F7) g MW (h7)

where f~ and h™ — h are supported in
supp p N J~ (supp h).

eo(eV M) = o (efw(h‘)) o ®(F7) _ |g=S(h™,h™)/R  id(f )

if o is quasifree with two-point function S.
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Examples of induced observables

€J(efw(h)) — o~ S(h™,h7)/2 Sid(f7)
ea(V(h)) =@(f )
eo(W(h)?) = &(f)>+S(h™, h™)1

Consequently,

E(W(h); w) = w(®(f))

Var(V(h); ws) = Var(®(f~);w)+ S(h™,h™)

o~

Increased variance in true measurement from detector fluctuations.
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| ocalisation of induced observables

£5(W(h)") may be localised in any open causally convex nhd of

supp f~ C suppp N J™ (supp h)

Localisation region for finite-time coupling is a diamond D.

Localisation region for eternal coupling is a wedge W (can’t do better).
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