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Abstract: | will review work by myself and others in recent years on the use of randomization in quantum circuit optimization.&nbsp; | will present
general results showing that any deterministic compiler for an approximate synthesis problem&nbsp;can be lifted to a better random
compiler.&nbsp; | will discuss the subtle issue of what "better" means and how it is sensitive to the metric and computation task at hand.& nbsp; |
will then review specific randomized algorithms for quantum simulations, including randomized Trotter (Su &amp; Childs) and my group's work on
the gDRIFT and SPARSTO& nbsp;algorithms.&nbsp; The gDRIFT algorithm is of particular interest as it gave the first proof that Hamiltonian
simulation is possible with a gate complexity that is independent of the number of terms in the Hamiltonian.&nbsp; Since quantum chemistry
Hamiltonians have a very large ( ~N”4) number of terms, randomization is especialy useful in that setting. | will conclude by commenting on a
recent& nbsp;Caltech paper with interesting& nbsp;results on the derandomization of random agorithms!&nbsp; Some of the relevant preprints
include:

https://arxiv.org/abs/1910.06255
https://arxiv.org/abs/1811.08017

https://arxiv.org/abs/1612.02689
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Earl Campbell

On random quantum circuits

and their uses in compilation
an overview of work by myself and others

All work done at University of Sheffield
talk includes work with collaborators: Yingkai Ouyang and David White

Currently a contractor for AWS Center for Quantum Computing,
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Antiquity &

middle ages
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GATE SYNTHESIS / COMPILING

Gateset §
A collection of unitaries used to build circuits

eg.from G = {.A,B, C'} we canbuild ABC,ABBC,CBC, etc
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GATE SYNTHESIS / COMPILING

Gateset ¥
A collection of unitaries used to build circuits

eg.from G ={A,B,C} we canbuild ABC,ABBC,CBC, etc

Universality - Informal statement

G is universal if it can implement any unitary (upto finite precision)

Universality - Formal statement

G is universal if for any target unitary V and € > 0 there exists
afinite circuit U € (G) suchthat d(U,V) <e

Example
Clifford+T or Clifford+Toffoli
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GATE SYNTHESIS / COMPILING

Costmodel €: G — R,
Each elementary gate given a positive valued “cost”
This induces a circuit cost

it U= HG%' then €(U) = Z‘.’:(Gi)

Example
Uniform cost model:
€(G)=1 forall Geg

WMagic state cost model / T-count:
C(T)=1land €(C)=0 forall C intheClifford group.
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GATE SYNTHESIS / COMPILING

blackbox software

| Ue (g
G, ¢) St

with [|[U = V|eo <€

susually with some promise

&(U) < f(e)

Unitary compiler
e>0

For efficient compilers The promise function f(€) is often polylog f(e) < Alog(1/€)”

An optimal compiler will have the lowest possible €(U) and f(e)
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GATE SYNTHESIS / COMPILING

Solovay (’97 email claim)-Kitaev (97 paper)

Consider any universal gate set G (generating a group) with uniform cost.

Robert‘ Solovay (19é3)
An algorithm to solve the compiling problem using (':(U) < O(log(1/€)™)

where v is between 3 and 4.

Runtime is efficient in Hilbert space dimension and log(1/e¢)

Alexei Kitaev

But what is the constant ’}/ Fé
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GATE SYNTHESIS / COMPILING

Solovay (’97 email claim)-Kitaev (97 paper)

Consider any universal gate set G (generating a group) with uniform cost. \ A

Robert‘ Solovay (19é3)
An algorithm to solve the compiling problem using €(U) < O(log(1/€)7)

where v is between 3 and 4.

Runtime is efficient in Hilbert space dimension and log(1/e¢)

The Solovay-Kitaev algorithm undergrad
Dawson and Nielsen QIC 2006 thesis

Alexei Kitaev

The exponent constant is
v = 3.97

The prefactor grows with the Hilbert space dimension

Aram Harrow

Michael Christopher
Nielsen Dawson
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GATE SYNTHESIS / COMPILING

Efficient discrete approximations of quantum gates
Harrow, Recht, Chuang
Journal of Mathematical Physics (2002)

Consider any universal gate set G (generating a group) with uniform cost.

Aram Harrow

There exists a solution to the compiling problem with €(U) < O(log(1/¢))
and this is optimal!

No construction algorithm given (except an inefficient brute force search)

Ben Recht

Issac Chuang
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Theoretically possible
(Harrow, Recht, Chuang)

v =1

Pirsa: 20100062

Practically feasible for modest Hilbert space dimension
(Solovay,Kitaev) see also (Harrow and Nielsen,Dawson)

v = 3.97
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The Renaissance
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FOCUS ON SPECIFIC GATE SETS

Progress driven by focusing on a specific gate set important in fault-tolerant quantum computing

Gate set generated by g p— {CF7 CNOT, S, H}

Clifford group non-Clifford element

(CNOT. S, H) o
H=%(i _11) T = 0 \/;

=0 1)

CNOT 2-qubit control-X Also called pi over 8 phase gate

¢(C)=0 ¢&T)=1
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THE RENAISSANCE

Fast and efficient exact synthesis of single qubit unitaries
generated by Clifford and T gates

Kliuchnikov, Maslov, Mosca,

QIC13 607 (2013) — arXiv:1206.5236

L R

Vadym Kliuchnikov

Let G be single qubit Clifford+T and U € (G)
, thenwe can efficiently compute a circuit achieving the optimal T-count. €(U)

Proof uses the ring Z[%,i]

In bullet points: Dmitri Maslov
< Only single qubit gates
< Only exact synthesis & not all unitaries (no epsilon)
< Efficient
< Optimal
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THE RENAISSANCE

An algorithm for the T-count
Gosset, Kliuchnikov, Mosca, Russo
preprint arXiv:1308.4134

Va&Kuciov
Let G be n-qubit Clifford+T and U € (G)
then we can compute a circuit achieving the optimal T-count €(U)

intime O(2"*Wpoly(n, €(U)))

A

¢ e
David Gosset

> 1
Proof uses thering Z[—,1
ad A
In bullet points: },

<~ Any number of qubits! RN B

g s & . Vincent Russo
< Only exact synthesis & not all unitaries (no epsilon)
~ Inefficient!
< Optimal
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THE RENAISSANCE

Optimal ancilla-free Clifford+T approximation of z-rotations
Ross and Selinger
QIC 16 901 (2016) — arXiv:1403.2975

. Let G be single qubit Clifford+T and U = exp(—ifZ)
then for any e > 0 we can find approximation V' with d(U,V) <e
and optimal T-count. €(V) < 4log(1/¢€) + O(loglog(1/¢))

In bullet pOihtS: f:eil ".-l:lien"LR;ss
< Only single-qubit Z-axis rotations
< Inexact synthesis ,)/ S 1

S Efficieni/d/ o
< Optimaltinder mild assumptions)
Convenient command -
] Peter Selinger
line tool
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THE RENAISSANCE

Still leaves open:

< Heuristics for many-qubit synthesis
- too hard to hope for practical, optimal solutions
< Approaches for specific tasks
- e.g. Hamiltonian simulation - more on this later
< Benefits of ancilla and measurements
- Many nice/partial results but little known regarding optimality.
~ Benefits of randomness - remainder of this talk

Pirsa: 20100062 Page 18/48



Random
compilers:

Measuring noise
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MEASURING ERRORS

P1 D1

Fidelity 1-normerror ||M||; = Tr[V M MT]
F(¢1,%) = (p1|9) (¥|¢1) where M = |$1)(¢1| — [¢)(¥)]
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MEASURING ERRORS

Measure some observable X, then

¢ 1 Error in probability

1-norm error
of measurement outcomes —

X Not fidelity!!

1-normerror ||M||; = Tr[V M MT]
where M = |¢1)(¢1] — [¢)(¢]
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MEASURING ERRORS

¢ 1 ¢2 50% probability ¢ 1

. p— 0 = 50% probability ¢2

Randomness quadratically reduced
1-norm errorl

Although (average) fidelity is unchanged
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GATE SYNTHESIS / COMPILING

Random compiling problem
Given a .V and € > 0 output a probability distribution of circuits, realising

o ZpiUipUg _
suchthat d(€,V) <e and minimise €(&)
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GATE SYNTHESIS / COMPILING

Random compiling problem
Givena V/ and € > 0 output a probability distribution of circuits, realising

o ZpiUipUg _
suchthat d(€,V) <e and minimise €(&)

What distance we use matters!

Diamond norm distance

do(E,U) = 5]IE ~U]ls = %mpH(E@H)(p)”—p”(lu@H)(p)nl

where || X||; ;= Tr[VXTX] isthe Schatten 1-norm

Pirsa: 20100062 Page 24/48



irsa: 20100062

Random
compilers:

Campbell 17/
posted same
week as
Hastings 17/
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Shorter gate sequences for quantum computing by mixing unitaries
Earl Campbell

Phys. Rev. A 95, 042306 (2017) — arXiv:1612.02689

Turning Gate Synthesis Errors into Incoherent Errors

Matthew B. Hastings' ?

!Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA
*Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA

Using error correcting codes and fault tolerant techniques, it is possible, at least in theory, to pro-
duce logical qubits with significantly lower error rates than the underlying physical qubits. Suppose,
however, that the gates that act on these logical qubits are only approximation of the desired gate.
This can arise, for example, in synthesizing a single qubit unitary from a set of Clifford and T gates;
for a generic such unitary, any finite sequence of gates only approximates the desired target. In this
case, errors in the gate can add coherently so that, roughly, the error € in the unitary of each gate
must scale as € < 1/N, where N is the number of gates. If, however, one has the option of synthe-
sizing one of several unitaries near the desired target, and if an average of these options is closer to
the target, we give some elementary bounds showing cases in which the errors can be made to add
incoherently by averaging over random choices, so that, roughly, one needs ¢ < 1/ V'N. We remark
on one particular application to distilling magic states where this effect happens automatically in
the usual circuits.
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THE RESULT

Preamble
Let G be auniversal gate set with cost measure €

assume some blackbox V
unitary compiler 0 < e < 0.01

equipped with promise
¢(U) < f(e)

Theorem
..then there exists a random sequence &(p) = ijUij}
7

with do(V,E) < 10€? and cost €(€) < f(e)

2nd Theorem (paraphrased)
For single qubit axial rotations: the assumptions can be relaxed and
inequalities tightened slightly.
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THE RESULT

“same cost gets you better error suppression”

“same error suppression for lower cost?”
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APPLICATIONS TO SPECIFIC BLACK BOXES

WE SAVE ~ 27

random
compiling

314

optimal unitary

Ross For single qubit Clifford+T gate set
Selinger and T-count cost metric

600

s0q 165

— 1 Resource saving 2X |
Y 150 90

or less
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APPLICATIONS TO SPECIFIC BLACK BOXES

WE SAVE ~ 27

random

optimal unitary compiling

Ross For single qubit Clifford+T gate set
Selinger and T-count cost metric | 3?4
300 165
Resource saving 2X MR
150 90

or less

Solovay For any gate-set / cost metric

Kitaev

Resource saving 2597 ~ 15.7 h
v~ 3.97

Still a good option for T-gate synthesis
over a modest number of qubits (more than 1, less than ~10)
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SKETCH

ALGORTIHM SKETCH

U equipped with promise
¢(U) < fle)

assume some blackbox 14
unitary compiler ¢

1) Use black-box to find a net of 2) Lift to find “nearby” 3) Solve to find probability weights

solutions “nearby” to target Hamiltonian generators assigned to each circuit

Hs

; H, zj:ij ; = Hiarget
.
H@/ ’
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Random

compilers:
Childs,

Ostrander,
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RANDOM PERMUTATIONS

Faster Quantum simulation by randomisation
Childs, Ostrander, Su
Quantum 3,182 (2019). — arXiv:1805.08385

Task: Hamiltonian simulation

Given Hamiltonian with fixed decomposition

L
sz%ﬂj with [|Hj|| =1

Jj=1

Andrew Childs

Approximate U = exp(iHt) for some t
Using gate set G = {exp(¢H,;7)} and cost model is number of such gates Aaron Ostrander

When Hj are Pauli operators further synthesis possible by Ross-Selinger

Yuan Su
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exp[iSHIt/r]/ )

Pi

RANDOM PERMUTATIONS

Old (deterministic) solution 1st order

"
Trotter-Suzuki Product Formulae exp(iH1) (H exp(iH;t/ T))

e.g. One Ist order step

e.g. Ten first order steps
H =5H,+2H,+ H3 + Hy + Hs

Bl N O
-

expli2Ht/r] exp| H,;t[ ]

exp|iHat /7|
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RANDOM PERMUTATIONS

Some permutation of
1Trotter step
Another permutation of
Each permutation 1Trotter step
has same error bound.

Target unitary is surrounded
by many different nearby solutions

I.II that we can randomly selected from
Can use Campbell/Hastings results!

Pirsa: 20100062 Page 35/48



RANDOM PERMUTATIONS

Some permutation of
1Trotter step
Another permutation of
Each permutation 1Trotter step
has same error bound.

Target unitary is surrounded
by many different nearby solutions
that we can randomly selected from

Ten deterministic first order steps

Can use Campbell/Hastings results!

. Gate complexity
‘ to obtain e error

| | | \ [ | | | | L
TN A R I W | e oo
| | | = | | | | !

Ten randomised first order steps (each choice must be i.i.d)

ST OO [ 5 = 022022/
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RANDOM PERMUTATIONS

Paper contains theorem statements & proofs showing improvement

Numerical results for 1D Heisenberg Spin chain with a random magnetic field

r = Number of Trotter steps, so lower is better

108 T . T ] 103 . 10°

ol ; | ]
. e / - et ,
101 / ' : [ - /

First order 1 IF Fourth order Sixth order
o Deterministic | - i oDeterministic o Deterministic
© Randomized o Randomized o Randomized
3 L 1 L L 1
1 6 78 9 10 10 6 7 8 9 10 18 6 7 8 9 10
n n n

Figure 1: Comparison of the values of r between deterministic and randomized product formulas.
Error bars are omitted when they are negligibly small on the plot. Straight lines show power-law
fits to the data.
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Random

compilers:
gDRIFT &
SPARSTO
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Task: Hamiltonian simulation

Given Hamiltonian with fixed decomposition
L
H=) cH; with |[Hj|l=1
j=1
Approximate U = exp(iHt) for some t

Using gate set G = {exp(¢H;7)} and cost model is number of such gates

When Hj are Pauli operators further synthesis possible by Ross-Selinger

*BUT, what if L is very large (e.g. quantum chemistry L = O(N?%) )
then standard Trotter approaches have large complexity

Pirsa: 20100062
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QDRIFT

Earl Campbell

A random compiler for fast Hamiltonian simulation

Phys. Rev. Lett. 123 070503 (2019)

Hamiltonian
& assumptions

letting

)\IZCJ'
J

' qDRIFT = quantum drift

With probability

p;j = ¢/
Do exp(iAtH,; /G)

and repeat G times

so sequence looks visually like
Hl BN "HNEE BN HNEEEEEEE

rather than

Results

Gate complexity
242
GqDRIFT = 2)\ t /6

No L dependence

Pirsa: 20100062
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PROOF SKETCH

7
Given H = ZCjHj and L(p) =1i[H, p|
j=1

Want the unitary “channel” exp(Lt) =14+ tL + O(t?) [

Define L;(p) = i[Hj, p] sothat L= ¢;L;

J

Randomly selecting 1 gate (and forgetting) gives the channel & = ij exp(TL;)
J

: Cj 1 :
Setting p; = XJ we have & = XZCj exp(7L;) =H+Z%[»_j +..o0 [**]
J i

Setting 7 = At then [*] and [**] match to Ist order N

One 1gate per “step” so no L dependence. Do some carefully bounding of higher order effects and done.
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QDRIFT

A random compiler for fast Hamiltonian simulation
Earl Campbell
Phys. Rev. Lett. 123 070503 (2019)

propane - 46 qubits carbon dioxide - 54 qubits ethane - 60 qubits
A=426.61 A=6.58466 L[ =241582 A=608.414 A=10.3658 L=13959//A\ A=768.138 A=4.07041 L=467403 key
g@ 30. t = 6000 g 30 t= fiDPU g - t = 6000 qDRIFT
.%D 25 g g 25 1st-order Trotter
c € E - === deterministic
§ 20 § § 20 random
g 5l @ @
2 §: é 2 higher-order Trotter
Q010 Tioe e = Y10z 104 106 108 S 10 e e e || - ‘;":r:fjg‘;‘n'”'s“c
\_ Time (s/Hr) J L Time (s/Hr) PR Time (s/Hr) VAN Y,
Caveats:

© boundintermsof A= max(cj) would be nice to redo in terms of tighter “commutator” bounds;
< Works well for chemistry, but not spin chain Hamiltonians;
< Error in terms of diamond norm

Pirsa: 20100062 Page 42/48



SPARSTO

Compilation by stochastic Hamiltonian sparsification
Ouyang, White, Campbell

Quantum 4 235 (2020)
Carbon Dioxide Ethane 2 Propane
102 i 1073 N
: 10
107
10°° 101 L
107 T E
= | 3 a3
a 10-5 a R 10~
g g10 g
w . wi TR
100 .
e 1079 1o
108
0%
15 16 17 18 19 16 17 18 19 20 21 15 16 17 18 19
Log(Gates) Log(Gates) Log(Gates)
—+— SpPARSTO « Corollary 2 qDRIFT —=— COS 2nd Ord

SPARSTO: Sparsify the Hamiltonian to reduce effective L

interpolating between gDRIFT and 2nd order Trotter with some
improvements in-between

David White
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DERANDOMIZED

Quantum simulation via randomized product formulas:
Low gate complexity with accuracy guarantees

Chen, (Robert) Huang, Kueng and Tropp
arXiv:2008.11751

)

Given a randomised algorithm
¢1 ¢2 (e.g. qDRIFT or SPARSTO)

with some mixed state/channel,
how good are the individual samples?

Joel Tropp
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DERANDOMIZED

Quantum simulation via randomized product formulas:
Low gate complexity with accuracy guarantees
Chen, (Robert) Huang, Kueng and Tropp

arXiv:2008.11751 _
w Chi-Fang Chen
Given a randomised algorithm
¢1 ¢2 (e.g. gDRIFT or SPARSTO) |
with some mixed state/channel, (Robert) Huang

how good are the individual samples?

Derandomized gDRIFT: with prob d the sampled
n-qubit circuit has diamond norm error less than €
when we use G gates: ,

G = O(nt* ?/e?) + O(log(1/8)t*X? /€?)

Richard Kueng

4

_ 2,2 -
Compare GqDRIFT = 2X%t /E Joel Tropp
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OUTLOOK

< Not much in terms of software implementation & experimentation of random protocols,
v especially w.r.t multi-qubit circuits

< Improved randomised algorithms using convex optimisation.

< Understanding roles of randomness in some cases like phase estimation where we are interested
in energy error and not unitary error!

<~ Randomness in post-Trotter (e.g. LCU) circuits?

< Beyond i.i.d probability distributions?
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Q THANK YOU!
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