Title: The Weak Scale as a Trigger Part I: Crunching Dilaton, Hidden Naturalness

Speakers: Raffaele D'Agnolo

Series: Particle Physics

Date: October 20, 2020 - 1:00 PM

URL: http://pirsa.org/20100059

Abstract: I discuss a new approach to the Higgs naturalness problem, where the value of the Higgs mass is tied to cosmic stability and the possibility of a large observable Universe. The Higgs mixes with the dilaton of a CFT sector whose true ground state has a large negative vacuum energy. If the Higgs VEV is non-zero and below O(TeV), the CFT also admits a second metastable vacuum, where the expansion history of the Universe is conventional. As a result, only Hubble patches with unnaturally small values of the Higgs mass support inflation and post-inflationary expansion, while all other patches rapidly crunch. I will also comment on alternative realizations of the mechanism that do not require a CFT sector and have a simple perturbative description.

Pirsa: 20100059 Page 1/52

THE WEAK SCALE AS A TRIGGER

PART I: CRUNCHING DILATON, HIDDEN NATURALNESS

Pirsa: 20100059 Page 2/52

FINE-TUNING 101

A physical observable can be computed as the sum of multiple unrelated contributions

$$\mathcal{O} = O_1 + O_2 + \dots$$

At least two of them are much larger than its observed value

$$\mathcal{O}_{
m obs} \ll |\mathcal{O}_{1,2}|$$

PAST FINE-TUNING PROBLEMS

Mysterium Cosmographicum

Electron Self-Energy

Both have paradigm-shifting resolutions

Pirsa: 20100059 Page 4/52

Pirsa: 20100059 Page 5/52

EFFECTIVE FIELD THEORIES

In Quantum Field Theory: Systematic way of integrating out high energy degrees of freedom to obtain a simplified low energy theory

RENORMALIZATION

PRECISION CALCULATIONS

SYMMETRIES FROM COARSE GRAINING

QFT INSIGHTS FROM STRING THEORY

Pirsa: 20100059 Page 6/52

ONE TOOL FOR MULTIPLE APPLICATIONS

POST-NEWTONIAN EXPANSIONS

LANDAU THEORY OF FERMI LIQUIDS

LARGE SCALE STRUCTURE

CHIRAL PERTURBATION THEORY

Pirsa: 20100059 Page 7/52

THE HIERARCHY PROBLEMS

Take a heavy mass scale [Gravity] and apply this procedure of integrating out:

SIZE OF THE UNIVERSE ~ 10⁻⁶⁰ observed

HIGGS BOSON MASS ~ 10¹⁶ observed

Pirsa: 20100059 Page 8/52

THE HIERARCHY PROBLEMS

Take a heavy mass scale [Gravity] and apply this procedure of integrating out:

These answers are based on something more fundamental than the procedure itself: Symmetry

~ 10⁻⁶⁰ observed

~ 10¹⁶ observed

Pirsa: 20100059 Page 9/52

HIGGS MASS EXPLANATIONS

There is only a handful of conceptually distinct ways in which we know how to solve the problem. All have deep implications for our understanding of Nature.

- 1. Symmetry
- 2. Lower the cut-off
- 3. Multiverse + Anthropic selection
- 4. Nnaturalness [Arkani-Hamed, Cohen, RTD, Hook, Kim, Pinner]
- 5. Dynamical Selection Last five years
- 6.* Gravity does not compute in a Wilsonian way

Pirsa: 20100059 Page 10/52

TODAY'S TALK

Crunching Dilaton, Hidden Naturalness

[Csaki, RTD, Geller, Ismail] '20

- 1. Symmetry
- 2. Lower the cut-off
- 3. Multiverse + Anthropic selection
- 4. Nnaturalness [Arkani-Hamed, Cohen, RTD, Hook, Kim, Pinner] '16
- 5. Dynamical Selection
- 6.* Gravity does not compute in a Wilsonian way

Pirsa: 20100059 Page 11/52

BASIC PICTURE

Landscape of Higgs Masses populated by inflation

$$-\Lambda_{\rm H}^2 \le m_H^2 \le \Lambda_{\rm H}^2$$

 $\langle H^0 \rangle \simeq v$

 $\langle H^0 \rangle \simeq v$

BASIC PICTURE

After a time

$$t_c < M_{\rm Pl}/\Lambda_{\rm H}^2$$

All patches where the Higgs vev

$$\langle H^0 \rangle \simeq v$$

$$\langle H^0 \rangle \equiv h$$

Is outside of a certain range

$$h_{\min} \lesssim h \leq h_{\mathrm{crit}}$$

crunch

$$\langle H^0 \rangle \simeq v$$

$$\langle H^0 \rangle \simeq v$$

BASIC PICTURE

Only universes with the observed value of the weak scale can live longer than a Planck time and inflate. **Today the multiverse looks like**:

$$\langle H^0
angle \simeq v$$
 $\langle H^0
angle \simeq v$ $\langle H^0
angle \simeq v$

Pirsa: 20100059 Page 15/52

Pirsa: 20100059 Page 17/52

Pirsa: 20100059 Page 19/52

 5×10^{40}

0

For this to work:

The **Higgs vev affects at O(1) the** χ **potential** near its minimum in our universe

 $m_\chi \sim \frac{v^2}{\langle \chi \rangle}$

This is quite general and is true for most ideas involving cosmological selection (relaxion, ...)

 -5×10^{40} 5×10^{11} 1×10^{12} $\chi \text{ [TeV]}$

 1×10^{12} 1.5×10^{12}

Pirsa: 20100059

CRUNCHING POTENTIAL FROM ADS

$$ds^{2} = \left(\frac{R}{z}\right)^{2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2}\right)$$

CRUNCHING POTENTIAL FROM ADS

$$ds^{2} = \left(\frac{R}{z}\right)^{2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2}\right)$$

SM Einstein's equations

$$z_{\mathrm{UV}} = R \equiv \frac{1}{k}$$
 $z_{\mathrm{IR}} = 1/\chi$

Pirsa: 20100059 Page 22/52

$$V(\chi, H) = V_{GW}(\chi) + V_{H\chi}(\chi, H) + V_{H}(H)$$

Usual GW stabilization of the dilaton

$$V_{\rm GW}(\chi) = -\lambda \chi^4 + \lambda_{\rm GW} \frac{\chi^{4+\delta}}{k^{\delta}}$$

Scale invariant (detuning of brane and bulk tension)

Breaking of scale invariance from GW scalar mass

$$\delta = \frac{m_{GW}^2 z_{\mathrm{UV}}^2}{4}$$

$$V(\chi, H) = V_{GW}(\chi) + V_{H\chi}(\chi, H) + V_{H}(H)$$

Usual GW stabilization of the dilaton

Pirsa: 20100059 Page 24/52

$$V(\chi, H) = V_{\text{GW}}(\chi) + V_{H\chi}(\chi, H) + V_{H\chi}(H)$$

Higgs UV brane Potential

$$V_H(H) = -m_H^2 |H|^2 + \lambda_H |H|^4$$

The Higgs mass is scanning in the landscape

$$V(\chi, H) = V_{\text{GW}}(\chi) + V_{H\chi}(\chi, H) + V_{H}(H)$$

Generation of a metastable minimum around a TeV

$$V_{H\chi}(\chi, H) = \lambda_2 |H|^2 \frac{\chi^{2+\alpha}}{k^{\alpha}} - \lambda_{H\epsilon} |H|^2 \frac{\chi^{2+\alpha+\epsilon}}{k^{\alpha+\epsilon}} - \lambda_4 |H|^4 \frac{\chi^{2\alpha}}{k^{2\alpha}}$$

Localized

Interaction Higgs mass with GW scalar Higgs quartic

Localized

$$V(\chi, H) = V_{\text{GW}}(\chi) + V_{H\chi}(\chi, H) + V_{H}(H)$$

Pirsa: 20100059

$$V(\chi, H) = V_{\text{GW}}(\chi) + V_{H\chi}(\chi, H) + V_{H}(H)$$

$$V(\chi, H) = V_{\text{GW}}(\chi) + V_{H\chi}(\chi, H) + V_{H}(H)$$

Warping Trick: the dilaton is sensitive to the Higgs vev because loops in the UV are redshifted to the weak scale in the IR

Pirsa: 20100059 Page 29/52

CFT INTERPRETATION

Pirsa: 20100059 Page 30/52

CFT INTERPRETATION

(broken) CFT down to a scale $\langle \chi \rangle$

The SM is not conformal and gets corrections up to Λ_H

$$\mathcal{O}_H, \quad \Delta_H = 3 + \alpha/2 \quad SU(2)_L \quad \text{Doublet}$$

$$\mathcal{O}_{\epsilon}, \quad \Delta_{\epsilon} = 4 + \epsilon \qquad SU(2)_L \quad \text{Singlet}$$

$$\tilde{\lambda}_H \mathcal{O}_H^{\dagger} H + \tilde{\lambda}_{\epsilon} \mathcal{O}_{\epsilon}$$

 $\langle \rangle$

Gap between m_χ and $\langle \chi \rangle$

$$V_{\text{eff}} = a_0 \chi^4 + a_1 \tilde{\lambda}_H^2 H^2 \chi^{2+\alpha} + a_2 \tilde{\lambda}_H^4 H^4 \chi^{2\alpha} + a_3 \tilde{\lambda}_{\epsilon} \chi^{4+\epsilon} + a_4 \tilde{\lambda}_{\epsilon} \tilde{\lambda}_H^2 H^2 \chi^{2+\alpha+\epsilon}$$

...<u>x</u>

Pirsa: 20100059 Page 32/52

$$V(\chi, H) = V_{\text{GW}}(\chi) + V_{H\chi}(\chi, H) + V_H(H)$$

For simplicity take the GW potential such that at the metastable minimum

$$V_{\rm GW}(\chi_{\rm min}) \ll V_{H\chi}(\chi_{\rm min})$$

Then we need to examine only the cross terms to see if a universe is "alive"

$$V_{H\chi}(\chi, H) = \lambda_2 |H|^2 \frac{\chi^{2+\alpha}}{k^{\alpha}} - \lambda_{H\epsilon} |H|^2 \frac{\chi^{2+\alpha+\epsilon}}{k^{\alpha+\epsilon}} - \lambda_4 |H|^4 \frac{\chi^{2\alpha}}{k^{2\alpha}}$$

Pirsa: 20100059 Page 33/52

$$V(\chi, H) = V_{\text{GW}}(\chi) + V_{H\chi}(\chi, H) + V_{H}(H)$$

$$V_{H\chi}(\chi, H) = \lambda_2 |H|^2 \frac{\chi^{2+\alpha}}{k^{\alpha}} - \lambda_{H\epsilon} |H|^2 \frac{\chi^{2+\alpha+\epsilon}}{k^{\alpha+\epsilon}} - \lambda_4 |H|^4 \frac{\chi^{2\alpha}}{k^{2\alpha}}$$

$\langle H^0 \rangle \equiv h = 0$	$V_{H\chi}=0$ No low energy minimum
$h \lesssim H_I$	The minimum is not sensitive to the Higgs during inflation
$h\gtrsim h_{ m crit}$	$V_{H\chi} \sim -\lambda_4 \chi^{2lpha}$ No low energy minimum

Pirsa: 20100059

$$V(\chi, H) = V_{\text{GW}}(\chi) + V_{H\chi}(\chi, H) + V_{H}(H)$$

The critical Higgs vev can be computed exactly

$$h_{\text{crit}} = k \left(\frac{\lambda_2}{\lambda_{H\epsilon}} \frac{4 - \alpha^2}{(2 + \epsilon)^2 - \alpha^2} \right)^{\frac{1 - \alpha/2}{\epsilon}} \sqrt{\frac{\lambda_2}{\lambda_4} \frac{\epsilon(2 + \alpha)}{2\alpha(2 - \alpha + \epsilon)}}$$

$$\epsilon, \alpha \lesssim 1 \quad \to \quad h_{\rm crit} \ll k$$

Interpretation: $\epsilon \rightarrow 0$ approximate scale invariance at low energy

$$V(\chi, H) = V_{\text{GW}}(\chi) + V_{H\chi}(\chi, H) + V_{H}(H)$$

The size of the extra dimension depends on the Higgs vev

$$\chi_{\min} \simeq \left(\frac{h^2}{k^{\alpha}} \frac{2\alpha\lambda_4}{(2+\alpha)\lambda_2}\right)^{\frac{1}{2-\alpha}}$$

So also in this case parametrically

$$\epsilon, \alpha \lesssim 1 \quad \to \quad \chi_{\min} \ll k$$

Pirsa: 20100059 Page 37/52

PHENOMENOLOGY

 Low-energy Extra-Dimension (KK W, Z, photon, but no gluons or fermions)

$$1/R' = \langle \chi \rangle \equiv \chi_{\min} \simeq h$$

But not very low-energy (little hierarchy)

$$\chi_{\min} \simeq \left(\frac{h^2}{k^{\alpha}} \frac{2\alpha\lambda_4}{(2+\alpha)\lambda_2}\right)^{\frac{1}{2-\alpha}} \gtrsim \text{TeV}$$

$$\lambda_2 \simeq 10^{-2}\lambda_4$$

3. Light dilaton (little hierarchy)

$$m_\chi \sim m_h \sqrt{\frac{h}{\chi_{\min}}}$$

A LIGHT DILATON

Pirsa: 20100059 Page 39/52

Pirsa: 20100059 Page 40/52

PHENOMENOLOGY

 Low-energy Extra-Dimension (KK W, Z, photon, but no gluons or fermions)

$$1/R' = \langle \chi \rangle \equiv \chi_{\min} \simeq h$$

2. But not very low-energy (little hierarchy)

$$\chi_{\min} \simeq \left(\frac{h^2}{k^{\alpha}} \frac{2\alpha\lambda_4}{(2+\alpha)\lambda_2}\right)^{\frac{1}{2-\alpha}} \gtrsim \text{TeV}$$

$$\lambda_2 \simeq 10^{-2}\lambda_4$$

3. Light dilaton (little hierarchy)

$$m_\chi \sim m_h \sqrt{\frac{h}{\chi_{\min}}}$$

Pirsa: 20100059

A LIGHT DILATON

Pirsa: 20100059 Page 42/52

Pirsa: 20100059 Page 43/52

Pirsa: 20100059 Page 44/52

LOW SCALE SUSY

Natural lower bound:

$$\lambda \sim \frac{1}{16\pi^2} \frac{\Lambda^4}{\chi^4} \simeq \lambda_2, \lambda_{H\epsilon}$$

Metastable minimum: $V_{\rm GW}(\chi_{\rm min}) < V_{H\chi}(\chi_{\rm min})$

$$\lambda, \lambda_{\rm GW} \lesssim 10^{-5}$$

LOW SCALE SUSY

Low scale **bulk SUSY**?
Note that SUSY is not solving the hierarchy problem

Natural lower bound:

$$\lambda \sim \frac{1}{16\pi^2} \frac{\Lambda^4}{\chi^4} \simeq \lambda_2, \lambda_{H\epsilon}$$

Metastable minimum: $V_{\rm GW}(\chi_{\rm min}) < V_{H\chi}(\chi_{\rm min})$

$$\lambda, \lambda_{\rm GW} \lesssim 10^{-5}$$

COSMOLOGY OF THE CRUNCH

When
$$h=0 \to V_\chi \simeq -\lambda \chi^4$$

The dilaton can be stuck near the origin for a long enough time that patches with the wrong vev inflate

Solution: new gauge group in the bulk (or QCD)

$$V_{H\chi} \supset c\chi^{\beta}\Lambda_{\rm QCD}^{4-\beta}$$

Below
$$\chi_* \sim \Lambda_{\rm QCD}$$

Hard breaking of the CFT and new phase transition

Pirsa: 20100059 Page 47/52

Sliding Naturalness

[RTD, Teresi] In Preparation

BSM Ingredients:

$$\phi, \phi_+, H_d$$

Predictions:

- New Higgs below 125 GeV (still alive!)
- Two ultralight scalars that can mediate longrange forces and be dark matter (target for 5th force searches!)

Pirsa: 20100059 Page 48/52

Sliding Naturalness

[RTD, Teresi] In Preparation

$$V_{\phi} = \frac{\epsilon^2 M_*^2}{2} \phi^2 + \epsilon' M_* \phi^3 + \frac{\epsilon^2}{4} \phi^4 + (\kappa \epsilon M_* \phi H_u H_d + \text{h.c.})$$

$$\langle H_u H_d \rangle = 0$$

Pirsa: 20100059 Page 49/52

Sliding Naturalness

[RTD, Teresi] In Preparation

$$V_{\phi} = \frac{\epsilon^{2} M_{*}^{2}}{2} \phi^{2} + \epsilon' M_{*} \phi^{3} + \frac{\epsilon^{2}}{4} \phi^{4} + (\kappa \epsilon M_{*} \phi H_{u} H_{d} + \text{h.c.})$$

$$\langle H_u H_d \rangle \gg v^2$$

Pirsa: 20100059 Page 50/52

Sliding Naturalness

[RTD, Teresi] In Preparation

$$V(\phi_{+}) = \eta M_{*}^{3} \phi_{+} + \eta^{2} M_{*}^{2} \phi_{+}^{2} + (\lambda \phi_{+}^{2} H_{u} H_{d} + \text{h.c.})$$

$$\langle H_u H_d \rangle = 0$$

Pirsa: 20100059 Page 51/52

CONCLUSION

- A qualitatively new solution to the hierarchy problem
- Unique predictions for natural ED models: light dilaton, no fermionic (or coloured) KK states
- In its perturbative incarnation, unique predictions for fifth force searches and the LHC

Pirsa: 20100059 Page 52/52