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Abstract: The Petz recovery channel plays an important role in quantum information science as an operation that approximately reverses the effect
of a quantum channel. The pretty good measurement is a special case of the Petz recovery channel, and it allows for near-optimal state
discrimination. A hurdle to the experimental realization of these vaunted theoretical tools is the lack of a systematic and efficient method to
implement them. We rectify this lack using the recently developed tools of quantum singular value transformation and oblivious amplitude
amplification, providing a quantum algorithm to implement the Petz recovery channel.& nbsp;Our quantum algorithm also provides a procedure to
perform pretty good measurements when given multiple copies of the states that one istrying to distinguish.

Using the same toolbox, we aso develop a quantum algorithm for enacting the polar decomposition, a workhorse in linear algebra. This provides an
alternative route to implementing a pretty-good measurements for the special case of pure states, which speeds up the general-purpose algorithm
developed above.
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Summary of both results

@ Using Quantum Singular Value Transformation, we provide two
quantum algorithms for two theoretical tools:

@ From classical linear algebra: polar decomposition, matrix analog of
0
z=re".

© From quantum information: Petz recovery map, which approximately
‘reverses’ a quantum noise channel.

@ Application: implementation of Pretty-Good Measurements,
another ubiquitous proof tool now brought to life!

A
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Quantum Singular Value Transformation

Block-encodings

Unitary U is a block-encoding of A if

L= [ Ay ] — A=a({0|®xNU(0)®* /). (1)

U (acts on a qubits +s ancillae) can be used to realize a probabilistic
implementation of A/«.

On a-qubit input |¥),
e Apply U to |0)®° @ |¢)

@ Measure ancillae; if outcome was [0)®*, the first a qubits contain a
state ~ A|). h
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Quantum Singular Value Transformation

Quantum singular value transformation (1)

QSVT: A method to transform singular values of block-encodings
[Gilyén-Su-Low-Wiebe'18, Low-Chuang "16]

- U [: (idn (201-1) Ut eitn—1(2M1-1) U U pio1(2l-1) | -

This circuit composes U = [p 1 into [f(-p) } for your choice of polynomial f.

Q f(p) means ‘apply f to the singular values of p'.

@ Usually a polynomial approximation of ideal function f.
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Quantum Singular Value Transformation

Quantum singular value transformation (Il)
p ]
@ Gate complexity measured in number of uses of U”.

@ Depends on approximation’s domain ([0, 1]) and error (9).

: : 1=
e.g. Can approximate x/? with error = Hf(x) — xl/zH <d
2 [Aminsl]
@ Let k:= /\—_1@ ~ “condition number”, overall gate complexity
1 p
@ K|Og3 uses,of U”.
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Algorithm 1: Polar decomposition
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The first P: Polar decomposition

Polar decomposition

Definition (Polar decomposition)

The polar decomposition of A € CM*N s the factorization
A=UB=BU

where U is a unitary/isometry and B = VATA, B = v AAT Hermitian.

Task: enact U := Upglar(A) on an input quantum state.

‘QM — NUpolar(A)‘@b)
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The first P: Polar decomposition

Geometrical intuition for the polar decomposition

Singular value decomposition: A = UXV7T

Rotation into std basis Rescaling (in std basis) Rotation out of std basis
|v1) ) |uo)
LU o1|1) o ‘” ) Oo|Uo
VT by Lr 1|Uy
‘0> J[I‘O)
|vo)
But why should we have to go to the std basis?
k
Yihui Quek (Stanford) P3: Polar, Petz, PGM October 7, 2020 9/31

Pirsa: 20100030 Page 9/41



The first P: Polar decomposition

Geometrical intuition for the polar decomposition

Singular value decomposition: A = UXV7T

Rotation into std basis Rescaling (in std basis) Rotation out of std basis
v1) N |uo)
U1 o |1) o "U, > Oo|Uo
VT b3 U 1[Uy
‘0> U{J‘G)
|vo)
But why should we have to go to the std basis?
Polar decomposition: A = UV ATA
Rescaling in original basis Rotation
) T | Uy
[v1) \/ATA i 0O Jlut{/U 0)
e - |
k
|vo)
an|'€-‘n>
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The first P: Polar decomposition

Application of polar decomposition: Procrustes problem

Given: r (input, output) quantum state pairs: (|¢;), [1i))"_;. Which U
best transforms each input to output?

Figure 1: Taken from http://atlasgeographica.com/the-bed-of-procrustes/

o Solution: U* is the polar decomposition of FG', where F has | ;)
as columns and G has [¢;) as columns.
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The first P: Polar decomposition

Our algorithm

@ [Lloyd'20] provided an algorithm for enacting Upolar(A) based on
density matrix exponentiation and quantum phase estimation.

@ QSVT simplifies this dramatically: One realizes that

SVD(A) — Z U,’;\P;)(Q;| = Upolar(A) — Z |P;><q;‘
i=1

t=1

i.e. can simply use QSVT to set all non-zero singular values to 1.

Significant speedups

vs [Lloyd '20]: exponentially faster in e»with polynomial speedups in r, k.
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Algorithm 2: Petz recovery map
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The second P: Petz recovery map

Quantum algorithm for Petz recovery channels and pretty good measurements

Andrés Gilyén,"2* Seth Lloyd,*- " Iman Marvian,* ' Yihui Quek,’* and Mark M. Wilde®7-1

Unsiitute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
2Simons Institute for the Theory of Computing, Berkeley, California 94720, USA
*Department of Mechanical Engineering and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
*Department of Physics and Department of Electrical and Computer Engineering,
Duke University, Durham, North Carolina 27708, USA
*Information Systems Laboratory, Stanford University, Stanford, California 94303, USA
SHearne Institute for Theoretical Physics, Department of Physics and Astronomy,
and Center for Computation and Technology, Louisiana State University, Baton Rouge, Lowisiana 70803, USA
"Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
(Dated: July 28, 2020)

The Petz recovery channel plays an important role in quantum information science as an operation that ap-
proximately reverses the effect of a quantum channel. The pretty good measurement is a special case of the Petz
recovery channel, and it allows for near-optimal state discrimination. A hurdle to the experimental realization
of these vaunted theoretical tools is the lack of a systematic and efficient method to implement them. This paper
sets out to rectify this lack: using the recently developed tools of quantum singular value transformation and
oblivious amplitude amplification, we provide a quantum algorithm to implement the Petz recovery channel
when given the ability to perform the channel that one wishes (o reverse. Moreover, we prove that our quan-
tum algorithm’s usage of the channel implementation cannot be improved by more than a quadratic factor. Our
quantum algorithm also provides a procedure to perform pretty good measurements when given multiple copies
of the states that one is trying to distinguish.

arxiv:2006.16924
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The second P: Petz recovery map Background and intuition for the Petz map

Classical ‘reversal’ channel from Bayes' theorem

Classical channel

Input Output
- pyxylr) -y
x ~ px(x)

Probability distribution over outputs

py (W) = px(z)py|x (ylz)

oL

Given input px(x) and channel py|x(y|x), what is px|y(x|y)?
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The second P: Petz recovery map Background and intuition for the Petz map

Petz recovery

Classically, Bayes theorem yields ‘reverse channel’:

px (x)pyx(y|x)
py(y) '

PX\Y(XD’) =

Quantumly: Petz recovery map!
Given a forward channel, N and an ‘implicit’ input state ox:

o N . 1/2 w0 ) 1/2
PEANAC) = o PN (M(oa) V2 (W (oa)2) o (3)
Y
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The second P: Petz recovery map Background and intuition for the Petz map

Why should you care about the Petz map?

@ Universal recovery operation in error correction [Barnum-Knill'02,
Ng-Mandayam'09]

@ Important proof tool in QI: [Beigi-Datta-Leditzky'16] as a decoder
in quantum communication, achieves coherent information rate.

A wild Petz map has appeared in quan-
© tum gravity! [Cotler-Hayden-Penington-
Salton-Swingle-Walter '18]

© Is a type of quantum “Bayesian inference” [Leifer-Spekkens'13]
(see: x-product).
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The second P: Petz recovery map Background and intuition for the Petz map

Why should you care about the Petz map?

@ Universal recovery operation in error correction [Barnum-Knill'02,
Ng-Mandayam'09]

@ Important proof tool in QI: [Beigi-Datta-Leditzky'16] as a decoder
in quantum communication, achieves coherent information rate.

A wild Petz map has appeared in quan-
© tum gravity! [Cotler-Hayden-Penington-
Salton-Swingle-Walter '18]

@ Is a type of quantum “Bayesian inference” [Leifer-Spekkens'13]
(see: x-product).

© Has pretty-good measurements as a special*case (later)
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The second P: Petz recovery map QIT crash course

Quantum channels |

Quantum channel (informal): a physically valid map bringing one
quantum state to another.

@ Important use case: model for quantum noise, e.g. amplitude
damping channels
Theorem (Choi-Kraus theorem)
Any physically valid channel Na_,g(-) can be decomposed as

d—1

Naog(Xa) = Z ViXaV)
/=0

where V) are linear (‘Kraus’) operators and Zf:_ol V;r V) = Ia.
(and vice versa!)
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The second P: Petz recovery map QIT crash course

Quantum channels 1l

Definition (Channel adjoint)

Given Na_,g, the channel adjoint N;_m satisfies

(Y N(X)) = (NT(Y),X) VX €eEHaYeHs

Every channel can be replicated by an isometry acting on a larger input.

Definition (Isometric extension)

Given a channel Na_,g , an isometric extension
U:HaQ@ He — Hp @ HEer of N satisfies

Tre (U(p ® [0)(0]£)UT) = Nasss(p) (4)

A
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The second P: Petz recovery map QIT crash course

Assumptions

Assume we have the following quantum circuits to start with:

© Block-encodings of two states
o One can efficiently block-encode density matrices (proof omitted).

o The implicit state o4 (U7 = [U'A ])
o The state N(c4) (UN(?) = [N(.JA) ] ).

Q U;"E\TA_}EB, a unitary extension of the forward channel

e Setting: we have characterized the noise and can simulate it using
quantum gates.
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The second P: Petz recovery map QIT crash course

A peek at the Petz recovery map

Given: quantum state o4 (implicit ‘input’ to channel ~ px), quantum
channel N4_, g, Petz map is:

Pg’*’_\(A(wg) = JE\/ZNT (N(O'A)l/szN(O'A)l/z) J%zg
Composition of 3 CP maps (overall trace-preserving):

() = W) 2 () IN(oa)] >
(-) = NT().

() = oy 2()oy?.
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The second P: Petz recovery map Algorithm

Re-writing the channel adjoint

@ Second step of map: (-) = NT(")

e Can write adjoint A/T in terms of unitary extension UN-

N(wg) = 0|g UV T (Ig ® wg) UV |0) e

@ Problem: /g is not a quantum state.
Solution: act on maximally-entangled state % Z?’ial 1) E|i) g, whose
density matrix is ~ identity.

Yihui Quek (Stanford) P3: Polar, Petz, PGM October 7, 2020 2A5/31]
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The second P: Petz recovery map Algorithm

Overview of algorithm

@ Implement an isometric extension of the Petz map:

b=

VP o= (0l ® Ig)0 i (UN asps) W(0a)] " (ID)gs ® In).
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The second P: Petz recovery map Algorithm

Overview of algorithm

@ Implement an isometric extension of the Petz map:

1)
Vi ga= (0l ® I54)0 3 (U apB) | (IT)gz ® Is).
(1) N (ca)] 4 () N (oa)] -
Y
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The second P: Petz recovery map Algorithm

Overview of algorithm

@ Implement an isometric extension of the Petz map:
1)) 1)

vP . = 0%
B—EA " A

)

(1) W(ea)] 2 () IV (oa)] ™
o (I)NT()
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The second P: Petz recovery map Algorithm

Overview of algorithm

@ Implement an isometric extension of the Petz map:

1) 1) 1)
Vg—-anA e

(1) W(oa)l ™2 () IV (oa)] 2
o (1) NT())

o (IN) oy (o>,

e Finally: tracing over environment E implements the map.
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The second P: Petz recovery map Algorithm

Theorem

For a forward channel N and an implicit input state o4, we can realize an
approximation P of the associated Petz recovery channel P, such that:

oA N oA N
[Poat —poal, < (5)
with
6( dEKN(g)) uses of UNe_ gg (~optimal ) (6)
O (po/y(dgj KA(o)» K(U))) uses of U°A and UN(94) (7)

dg is the dimension of the system E, which is at least the Kraus rank of
the channel N(-).
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The second P: Petz recovery map Algorithm

Maps | and |

Maps | and |ll are a matter of transforming block-encodings:

1) )
Vg—)»EA = (0] ® IEA) F (UgAaEB)T (|F)E1§ ® Ip).

: . -1/2 -
o Map I: UN(0) = {N (74) ] @Yy !N (04) ] with O (kn(s))
uses of UN(7),

. /2 )
o Map lll: U7 = ["A } = [C’A ] with O(k,) uses of U°.
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The second P: Petz recovery map Algorithm

Theorem

For a forward channel N and an implicit input state o4, we can realize an
approximation P of the associated Petz recovery channel P, such that:

N A, i T A [
[Poat —poat, < (5)
with
6( dEKA,.’(O.)) uses of UNe_ gg (~optimal ) (6)
O (po/y(dgj KA(o)» K(U))) uses of U°A and UN(94) (7)

dg is the dimension of the system E, which is at least the Kraus rank of
the channel N (-).
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The second P: Petz recovery map Algorithm

Maps | and Il

Maps | and |ll are a matter of transforming block-encodings:

1) )
V§—>E;A = ((0lgr ® Ig4)0 (UgA—nEB)T (ID)gs ® Ip).

N (ffA) ] QsvT !N (0{)_1/ i ] with O (ko))

o Map I: UN(9) = {
uses of UN(9),

. 12 .
o Map IIl: U7 = ["j“ } gy [C’A ] with O(k,) uses of U7
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The second P: Petz recovery map Algorithm

Map II: Channel adjoint N7(+)

b=

1 rN \T — £ 1 .
VE—)EA = (<O|E' ® IEA)O',?l (\(”’:f_‘\".l yEB) [N(JA)] (\“ IEE & Ip).

@ Tensor in the maximally entangled state I'zz/dE

© Perform UNT.

@ Easy peasy, no QSVT needed.
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The second P: Petz recovery map Algorithm

Map II: Channel adjoint NT(+)

P T
VB—)EA T

(0l ® I5)0 3 (U 4y mn) W(oa)]™

@ Tensor in the maximally entangled state I'zz/dE
@ Perform UNT,

@ Easy peasy, no QSVT needed.
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The second P: Petz recovery map Algorithm

Map II: Channel adjoint NT(+)

b=

Veia = ({(0lp ® I54)0 iU asses) W(oa)] 2 (ID)gz ® In).

© Measure the system E’, accepting if the all-zeros outcome occurs.

@ lIgnore the system £ (i.e. trace it out).
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The second P: Petz recovery map Algorithm

Map II: Channel adjoint N7(-)

b=

[;'3"‘.1)03(U3{A—>EB)T WN(oa)l 2 (IT)es ® Ip).

© Measure the system E’, accepting if the all-zeros outcome occurs.

@ lIgnore the system £ (i.e. trace it out).

@ Not contiguous with steps 1 and 2! Do these steps after Map IlI
1

which applies 03.

P3: Polar, Petz, PGM October 7, 2020 25/31
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The second P: Petz recovery map Algorithm

More on measurement

Implementing in sequence the unitaries created through SVT obtains the

overall unitary
. 1 /1 v .
W = !4 deKN (o) w (8)

V — V| < O(¢).
@ This is a probabilistic implementation: Measuring E’ system,
probability psyccess = O(gé—K) of getting |0).

where V= ideal Petz map,

@ Make this deterministic: use Oblivious Amplitude Amplification to
boost probability by repeating W O (1/,/psuccess) times .
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Application of our algorithms:
Pretty-Good Measurements
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The last P: Pretty-Good Measurements

Pretty-Good Measurements

Given an ensemble of mixed states {o*},cx, and a quantum state p, we
are promised that p is in state ¢ with probability p(x). What POVM
maximizes Pr(correctly identify p)?

e No optimal strategy when |X'| > 3, but ‘pretty-good measurement’
does pretty-well on this. [Belavkin'75, Hausladen-Wootters'94]

@ Special case of the Petz map with oxg = > px(x)|x){x|x ® 0%, and
N the partial trace over X.

@ Our Petz map algorithm can implement this, with O (\/ \X|po|y(|<))

uses of unitary preparing oxg.
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The last P: Pretty-Good Measurements

Faster PGM

Special case: ensemble of r pure states over a uniform distribution

{p(j) = 1/r,16,)}/23-

@ Not that uncommon: this setting was considered by [Holevo'79].
o Let k = 1/Umin(2j i) {&il).
o Petz map algorithm: O(r?x%) uses of Uj.

e Polar decomposition algorithm can handle this, with polynomial
speedup: O(rk) uses of Uy.
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The last P: Pretty-Good Measurements

Why should you care about Pretty-Good Measurements?

@ Used to approach the Holevo information rate
[Hausladen-Jozsa-Schumacher-Westmoreland-Wootters'96]

@ Important proof technique: PGM ~ optimal measurement to
distinguish states

@ Is the optimal measurement in q. algorithm for dihedral hidden
subgroup problem [Bacon-Childs-vanDam'06]

@ Bounds on sample complexity for Quantum Probably Approximately
Correct (PAC) learning [Arunachalam-de Wolf'16]

@ Optimal for port-based teleportation [Leditzky'20]
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The last P: Pretty-Good Measurements

Takeaways!

The quantum singular value transform allows us to be systematic, rigorous
and fast.

Our algorithm for Polar decomposition
(arxiv:2077.77777)
@ provides new tools for quantum linear algebra;
and

@ speeds up PGM, for pure states and uniform
distribution.

Our algorithm for Petz recovery maps and
general-purpose PGM (arxiv:2006.16924)

@ brings these theoretical tools closer to
implementation; and

@ is almost optimal in gate complexity.

Yihui Quek (Stanford) P3: Polar, Petz, PGM October 7, 2020 /6311

Pirsa: 20100030 Page 41/41



