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Abstract: We show that a naA ve application of the quantum extremal surface (QES) prescription can lead to paradoxical results and must be
corrected at leading order. The corrections arise when there is a second QES (with strictly larger generalized entropy at leading order than the
minima QES), together with alarge amount of highly incompressible bulk entropy between the two surfaces. We trace the source of the corrections
to a failure of the assumptions used in the replica trick derivation of the QES prescription, and show that a more careful derivation correctly
computes the corrections. Using tools from one-shot quantum Shannon theory (smooth min- and max-entropies), we generalize these results to a set
of refined conditions that determine whether the QES prescription holds. We find similar refinements to the conditions needed for entanglement
wedge reconstruction (EWR), and show how EWR can be reinterpreted as the task of one-shot quantum state merging (using zero-bits rather than
classical bits), atask gravity is able to achieve optimally efficiently.
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The fish are all the same size

AdS/CFT
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Quantum gravity in (d+1)-
dimensional Anti-de Sitter space
(the “bulk”) is dual to a d-
dimensional conformal field theory
on the boundary.
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The fish are all the same size

AdS/CFT

Quantum gravity in (d+1)-
dimensional Anti-de Sitter space
(the “bulk”) is dual to a d-
dimensional conformal field theory
on the boundary.

Aim: understand the dictionary that
relates objects on each side of the
duality
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The Ryu-Takayanagi Formula

Entropy of the reduced state on
some boundary region = area of
minimal bulk surface anchored on
that boundary region

S(B) = m)in i(g)
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The QES Prescription

Entropy of the reduced state on
some boundary region =
generalised entropy of minimal bulk
surface anchored on that boundary

region
S(B) = m)%n 11(2;)

+ Shulk(X)
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Entangled fish contribt
to the entropy
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The QES Prescription

Entropy of the reduced state on
some boundary region =
generalised entropy of minimal bulk
surface anchored on that boundary

region
S(B) = m)in i(g)

+ Shulk(X)
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Entangled fish contribt
to the entropy

eeeeeeeeeeeeeeeee

The QES Prescription

Entropy of the reduced state on
some boundary region =
generalised entropy of minimal bulk
surface anchored on that boundary

region
S(B) = m)in i(g)

+ Shulk(X)

Can be derived from gravitational
path integral

Number of successes including a
derivation of the Page curve for an
evaporating black hole
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- Naive application of the QES prescription gives paradoxical results

- These paradoxes already exist at leading order in G, and so cannot be fixed by
small corrections to the QES prescription

- The paradoxes can been seen in calculations involving evaporating black holes,
but also in states that do not involve any black holes at all

- More careful entropy calculations gives consistent results, and show why the
assumptions in the Lewkowycz-Maldacena derivation of the QES prescription fail,
even at leading order

- Instead, the naive QES prescription needs to be replaced by a more refined
version, defined in terms of smooth min- and max-entropies (concepts from
one-shot quantum Shannon theory)

- All the results (and specifically the consequences for entanglement wedge
reconstruction) are close related to the task of one-shot quantum state merging.
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Part 1: A Paradox
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Consider a boundary region in
AdS3/CFT2 consisting of two intervals

Two extremal surfaces with different
topologies

We can add matter with O (&/Gy)
energy while only creating a small
backreaction on the geometry

If this matter is in a thermal state, it will
have entropy S = 0(¢/Gy)

By tuning the size of region B, we can
ensure Al _|_ S A2 A Al B
4GN 4GN o 4GN
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A
If the matter is in a pure state, S(B) = 4G1

N
_ A
4Gy

B

If the matter is in a thermal state, S(B)

If the matter is in a mixture of the pure
and thermal states, the QES prescription

says that y y
B) — min |——L 4 (1 — 2
S(B) = min e + (1 —p) 74GN}

However standard bounds on the entropy
of a mixture mean
A9

S(B) = ﬁ;—+u— e

+O(1)
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A
If the matter is in a pure state, S(B) = 4G1

N
_ A
4Gy

B

If the matter is in a thermal state, S(B)

If the matter is in a mixture of the pure
and thermal states, the QES prescription

says that y y
B) — min |——L 4 (1 — 2
S(B) = min e + (1 —p) 74G]\7}

However standard bounds on the entropy \_\ \‘

of a mixture mean

S(B) = g+ (1~ g+ 0(1) S

Differ at leading order
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- After the Page time, the semiclassical state looks

thermal, but the QES prescription (correctly) knows that
the entropy equals the Bekenstein-Hawking entropy,
consistent with unitarity. Great!
C
- Now measure all the Hawking radiation with probability C
p (otherwise do nothing). 2
« QES prescription now says S = min((1 — p) S¢,, Sgy)- 2 8
G
- But by the same arguments as the previous slide, rad G
unitarity implies S = (1 — p) Sgy. 2
- QES Prescription gives the wrong answer at leading 5
order (in fact can be just as inaccurate as the original 8

semiclassical Hawking answer).
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. The smooth max-entropy H/, ... (p) is (roughly) the log of the rank of the smallest

~ L , - : N
rank state p that is e-close to p: Hmax(ﬁ) = min log Rank(p)
p=DB:(p)
- It characterises the minimum size Hilbert space that the state p can be compressed
into.

- Equivalently, it gives a lower confidence bound on the size of a randomly chosen
eigenvalue of p.

- The smooth min-entropy H. ;. (p) is minus the log of the largest eigenvalue (i.e.
an upper confidence bound on the eigenvalues . -
PP ; HEg(p) = — min 1og Amax(p)

o p=B-(p)

. Also exist conditional smooth min/max -entropies but (unlike for von Neumann
entrOp'es) Ln/max (AlB) + H m/max(AB) rgnin/max(B)-
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- A thermal state, with a large number of degrees of freedom, can be well
approximated by a state of rank exp(S + 0(5)) (law of large numbers)

Its smooth max-entropy is approximately equal to its von Neumann entropy
- The same is true for a pure state (both are equal to zero)

- However the mixture of the true is roughly as hard to approximate as the thermal
state itself. Its smooth max-entropy is related to its von Neumann entropy by

- General rule: large corrections can show up for these sorts of incompressible
states, which require more degrees of freedom to encode than their entropy
might suggest
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Part 2: Resolving the Paradox
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- How do you calculate von Neumann entropies using a path integral?

Answer: we first calculate the integer n Renyi entropies

1

log Trp't
nog IoR

- We can then calculate the von Neumann entropy by analytically continuing the
Renyi entropies to n=1.
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The Replica Trick in AdS/CFT

How do you evaluate Tr(p™) in AdS/CFT?

1. States (bras and kets) are prepared Euclidean path integrals (2n in total). Sum over bra/ket
boundary conditions for mixed states.

2. Partial trace means you glue the bra and ket boundaries together.
3. The B boundaries are also glued together, but with cyclic permutations
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The Replica Trick in AdS/CFT

How do you evaluate Tr(p™) in AdS/CFT?

1. States (bras and kets) are prepared Euclidean path integrals (2n in total). Sum over bra/ket
boundary conditions for mixed states.

2. Partial trace means you glue the bra and ket boundaries together.
3. The B boundaries are also glued together, but with cyclic permutations
4. Integrate over all bulk geometries with those boundary conditions (dominated by saddle points)
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In general, finding the bulk geometries with the
correct boundary conditions is very hard

However, it is easy for a particular class of states,
called fixed-area states, where the areas of the
extremal surfaces have been measured

This means you don’t need to integrate over the
area of the extremal surfaces => saddle points
can have conical singularities at the extremal
surfaces

Bulk geometry = original bulk geometry, except
with branch cuts, permuting the different sheets
at the extremal surfaces
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In general, finding the bulk geometries with the
correct boundary conditions is very hard

However, it is easy for a particular class of states,
called fixed-area states, where the areas of the
extremal surfaces have been measured

This means you don’t need to integrate over the
area of the extremal surfaces => saddle points
can have conical singularities at the extremal
surfaces

Bulk geometry = original bulk geometry, except
with branch cuts, permuting the different sheets
at the extremal surfaces

Gravitational action cancels with normalisation
factor, except for contributions from conical
singularities ((¢p — 2 m)A/8nG)
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Boundary conditions fix the permutation in
regionsb and b

However the permutation in the central region
b’ is arbitrary

=> sum over saddles corresponding to all
permutations

tr(p) = Z o(C(m)=n) A1 /AG+(C(r~ om)—n) A2 /4G tr(pErmymy) .
TESn

If we dropped everything except the leading saddle
(either T or 1) and then analytically continued, we
would get the naive QES prescription
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Number of cycles

(= L

tl"(p%) _ Z (C(m)— A1/4G—|—(C(T ow)—n)A2/4Gt

TESRK

f(ﬂz%%bﬂb') :

Areas formally infinite => saddles that don’t maximise C(m) + C(t~! o 1) are
infinitely suppressed

Remaining permutations are associated with noncrossing partitions

Want to analytically continue this formula as a function of n. Problem: number of
terms in the sum depends on n

Fortunately, there exists some technology from the theory of free probability that
lets us do this
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Resolvent

R(1) = Tr( 1 >= rank(p)+2/1n_1 Tr p™
A—p A /\

D(A) = —llm[Im(R(A +i¢)) Determined by Tr(p™)

/\\ , Density of Eigenvalues of p

For the mixture of a pure and a thermal state (see arXiv:1911.11977 or the upcoming paper
for details), one can find the recursion relation:

AR = o216 pR (1-p)R
cA2/AG _ PR Ag/ac _ _(-p) p°
cA1/4G € cA1/4G+5

Cubic equation => can be solved (but full solution messy)
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pR (1-p)R

AR = e12/16 4 .
eA2/AG _ e R eAe/4G 64(11/% R
/\\ 7"
lgnorable at large R Ignorable at small R

Both approximations give a quadratic equation, with overlapping
regimes of validity

Nonzero eigenvalue density when the discriminant is negative
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The Eigenvalue Density
Dp(A)

eA2/4G _ oAr1/4G eigenvalues

4

pA1/4G

/ eigenvalues
| X,

1—-p _pr A
oA2/AG oAL/AG
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pR (1-p)R

AR = e12/1C 4 .
pA2/4G _ — 119/ =R eA2/4G _ 64(11/% R
/\\ 7"
lgnorable at large R Ignorable at small R

Both approximations give a quadratic equation, with overlapping
regimes of validity

Nonzero eigenvalue density when the discriminant is negative
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The Eigenvalue Density
Dp(A)

eA2/4G _ oAr1/4G eigenvalues

4

oA1/4G

/ eigenvalues
1-p _pr A
eA2/4G eA1/4G
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The Eigenvalue Density

Dp(A)
A
eA2/4G _ oAr1/4G eigenvalues
/ eA1/4G eigenvalues
. £
1—p A
eA2/AG eA1/4G
A Ay
S(B) = p—1 + (1 — p)—2+0(1
(B) =i+ (1= )3+ Ol
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The Eigenvalue Density

Dp(A)
A
eA2/4G _ oAr1/4G eigenvalues
/ eA1/4G eigenvalues
. £
1—p A
eA2/AG eA1/4G
A Ay
S(B) = p—1 + (1 — p)—2+0(1
(B) =i+ (1= )3+ Ol
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Part 3: When Do Large Corrections Exist?
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- For arbitrary bulk states, the current tools —
are insufficient to do the replica trick B
calculations explicitly

- However, we can make progress by noting U U
that the formula for Tr(pg) in fixed-area
states is the same as the formula for a
simple random tensor network T

- We can indirectly do the replica trick dB dg
calculation by calculating the tensor /-\ | ./\ |
network entropies (using any technique we b ( b' i b

want)
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The naive QES prescription says that

Ay JAG + S(BY),  S(V|b) < L=

4G

Ao/AG + S(b),  S(|b) = 2hs

S(B)na'ive —

A more refined QES prescription says that

(AAG+SO0),  He(V]b) < 2
S(B)reﬁned — < (dependS on detaﬂS)7 mln(b/‘b) AQ Al < H§11X(b/|b>
\A2/4G + S<b)7 nnn(b/‘b) 424_(;)(}1 5
Here Hmm/max(b'|b) are the smooth conditional min/max-entropy
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The naive QES prescription says that

S<B)na'1've — ==

A /4G + S(b),  S(V|b) > A=A

4G
A more refined QES prescription says that

(AJAG+SOY),  Hin(]p) < A4
S(B)refined = § (depends on details), HE, (b'|b) < Az Al < He
\A2/4G + S<b) nun(b/‘b) 45{1 ,

Here H

Ay JAG + S(bY),  S(V|b) < L=

min/max (D |D) are the smooth conditional min/max-entropy

Intuition: H3,,(b'|b) = number of qubits needed to communicate b’ to someone

who already has b (quantum state merging).
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For pure states,

Hiin(b'|D) = - Hiyax (b'|D)

The naive QES prescription says that

Ay JAG + S(BY),  S(V|b) < L=

4G

Ao/AG + S(b),  S(|b) = 2hs

S(B)na'ive —

A more refined QES prescription says that

(AJAG+SOY),  Hin(]p) < 4254
S(B)reﬁned — < (dependS on d@t&ﬂS)7 nnn(b/‘b) AQ Al < Hﬁnx(b/“?)
\A2/4G+ S<b)7 (b/‘b) 4(j41 :

Hl%

Here Hy,in /max(b'|b) are the smooth conditional min/max-entropy

Intuition: H3,,.(b'|b) = number of qubits needed to communicate b’ to someone
who already has b (quantum state merging).
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- For non-fixed area states, the replica geometries involve backreaction,
and so are hard to find explicitly

- However, general semiclassical holographic states can be written as a
superposition of polynomially many fixed-area states

- By similar arguments about entropy of mixture =~ expectation over
entropies to the ones we saw before, this means that, at leading order,
the entropy of the semiclassical state is given by the expectation of the
entropy over the states in the superposition

- Hence semiclassical holographic states have the same leading order
entropies as fixed-area states
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Part 4: Entanglement Wedge
Reconstruction and State Merging

irsa: 20100026 Page 38/44



- EWR: everything between the

minimal QES and the boundary
region is encoded in said boundary
region

- More precise version: given a bulk

Pirsa: 20100026

state p and a bulk operator (acting
within the entanglement wedge),
we can find a boundary operator
whose action on a purification of p
is the same as the bulk operator

Same condition for reconstruction
of b” as for the QES prescription
(Hiax(b'|b) < (A; — A1) /4Gy)
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- One-shot state merging: given a state p,p shared between Alice and Bob,

transfer Alice’s part to Bob by sending as few qubits as possible (so that Bob
ends up with a purification of the purification of p45)

. This is just the Schrodinger picture version of EWR (Bob’s part of the state is the

bulk state in region b, Alice’s part is the bulk state in region b’)

- Minimum number of qubits required for one-shot state merging is exactly

Hmax(A|B)

« Maximum number of qubits from region b’ to region Bis (A, — A1) /4Gy, so

gravity saturates this bound!

- For one-shot quantum state merging, it is important that you have a classical

side-channel sending information from Alice to Bob

- In gravity, there is no classical side-channel, but there is a ‘zero-bit side channel’

Pirsa: 20100026

(Hayden, GP arXiv:1807.06041). This is less useful but is still sufficient for state
merging.
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Beyond two extremal surfaces: min- and max-
entanglement wedges

Can exist d.o.f. outside the max-EW which
are fully reconstructable (or inside the min-

Max-EW = largest region b such that EW that do not influence the state on B)
A(V') — Ad)
4G

Min-EW = smallest region b such that ‘ \

A(b) — A(BY)

Vb C b, He, (b— V) <

max

Vo' C b, HE, (b'|b) >
(©16) 4G Fully encoded
EW = min-EW = max-EW (otherwise undefined) /}\ inB
All only defined within a static
slice/moment of time symmetry D.o.f. outside this region
\ cannot influence the

stateon B
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1. Min- and max-EWs are well-defined at leading order (i.e. up to
O (In g) variations in entropies)

2. Max-EW = Min-EW of complementary region (for pure states)
3. Max-EW € Min-EW

a. 1If By € B,, then the min/max-EW for B; € min/max-EW for B, (min/max-EW
nesting)

5. If min-EW = max-EW, then generalised entropy is minimised (new definition of
EW is consistent with the old definition)
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- Replica trick knows about more than the QES prescription

- Weird oddity (from QI point of view): holography only involves a single

state, yet von Neumann entropies seemed to play a crucial role (in
determining whether EWR is possible etc.)

- Reality: it was always smooth min/max-entropies that were important

(as in ordinary one-shot quantum Shannon theory)

- It was just that the states we were considering happened to have

Pirsa: 20100026

smooth min/max-entropies that were close to the von Neumann
entropy

Open questions: time-dependent spacetimes with >2 extremal surfaces
(maximin?), general derivation of refined QES directly from replica trick,
many others
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y
Geoffrey Penington

Thank youl!
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