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Abstract: Mgorana zero modes have attracted much interest in recent years because of their promising properties for topological quantum
computation. A key question in this regard is how fast two Majoranas can be exchanged giving rise to a unitary gate operation. In this presentation |
will first explain that the transport of Majoranas in one-dimensional topological superconductors can be formulated as a &oesimple&€s optimal
control optimization problem for which we propose several different control regimes. Next | will discuss the optimization methods, Differential
Programming and Natural Evolution Strategies, that were applied to the Majorana control problem and came up with a counter-intuitive transport
strategy. This strategy, which we dubbed jump-move-jump, will form the focus of the last part of the presentation in which | explain the key
underlying mechanisms behind the strategy by reformulating the motion of Majoranas in a moving frame. | will conclude by arguing that these
results demonstrate that machine learning for quantum control can be applied efficiently to quantum many-body dynamical systems with
performance levels that make it relevant to the realization of large-scale quantum technology.
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An effective toy model for topological superconductivity
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Majorana Zero Modes Moving the Majoranas
’Keyboard’ Potential (Alicia et al. (2011)):
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Quantitative measure for the quality of the path:

I(T)=1-F(T)=1— | (yp| Te~'Jo oty 2 (p)

Constraint: vayg = (x8 — xa)/ T = 1/ T fixed.
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Motion of Majoranas in a moving frame
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Differential Programming (DP)
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Natural Evolution Strategies (NES)
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Summary and further work
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