Title: How does a dark compact object ringdown?

Speakers: Elisa Maggio

Series: Strong Gravity

Date: October 01, 2020 - 1:00 PM

URL: http://pirsa.org/20100005

Abstract: Gravitational waves from the coalescence of compact binaries provide a unique opportunity to test gravity in strong field regime. In particular, the postmerger phase of the gravitational signal is a proxy for the nature of the remnant.

This is of particular interest in view of some quantum-gravity models which predict the existence of horizonless dark compact objects that overcome the paradoxes associated to black holes. Such dark compact objects can emit a modified ringdown with respect to the black hole case and late-time gravitational wave echoes as characteristic fingerprints.

In this talk, I develop a generic framework to the study of the ringdown of dark compact objects and provide a gravitational-wave template for the echo signal. Finally, I assess the detectability of dark compact objects with current and future gravitational-wave detectors.

Strong Gravity Seminar @Perimeter Institute October 1st, 2020

How does a dark compact object ringdown?

Elisa Maggio
Sapienza University of Rome
https://web.uniroma1.it/gmunu

Pirsa: 20100005 Page 2/30

Gravitational waves from binary mergers

Up to date 15 gravitational wave events from the coalescence of compact binaries have been detected.

The signal has 3 stages:

- Inspiral
- Merger
- Ringdown

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

1/23

Gravitational waves from binary mergers

Up to date 15 gravitational wave events from the coalescence of compact binaries have been detected.

The signal has 3 stages:

- Inspiral
- Merger
- Ringdown

I

What is the nature of the compact remnant?

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

1/23

Ringdown stage

The ringdown stage is dominated by the **quasi-normal modes** of the remnant which describe the response of the compact object to a perturbation.

$$\omega = \omega_R + i\omega_I$$

The signal can be modeled as a sum of exponentially damped sinusoids:

$$f_{\rm GW|ringdown} = \frac{\omega_R}{2\pi}$$

$$au_{
m damping} = -rac{1}{\omega_I}$$

Buonanno, CQG 19, 1267-1278 (2002)

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

2/23

Ringdown detections

The least-damped quasi-normal mode has been observed in the ringdown of the events GW150914 and GW190521.

Both detections are compatible with **Kerr black hole remnants**.

However the characterization of the remnant is still an open problem.

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

3/23

Test of the black hole paradigm

A test of the no-hair theorem requires the identification of at least two quasi-normal mode frequencies in the ringdown.

Dreyer+, CQG 21, 787 (2004)

Kerr black holes are *uniquely* determined by 2 parameters:

- Mass
- Angular momentum

Carter, PRL 26, 331 (1971); Robinson, PRL 34, 905 (1975)

Louder gravitational wave events and improvements of the **detector sensitivity** will allow to test the black hole paradigm.

Berti, Cardoso, Will, PRD 73, 064030 (2006)

I

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

4/23

Some questions

- I. Are there alternative models to black holes?
- II. What is the gravitational wave signal that they produce?
- III. Is their gravitational wave signal detectable?

.

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

5/23

Alternatives to black holes

There is a zoo of theoretical compact objects without horizon which:

are solutions to **modified gravity** and can overcome paradoxes of BHs, e.g., curvature singularity and Hawking information loss.

Mazur, Mottola, PNAS 101, 9545-9550 (2004); Mathur, Fortsch. Phys. 53, 793-827 (2005)

are solutions to GR in the presence of dark matter/exotic fields

Liebling, Palenzuela, LRR 20, 5 (2017); Brito+, Phys. Lett. B 752, 291-295 (2016)

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

6/23

Alternatives to black holes

There is a zoo of theoretical compact objects **without horizon** which:

are solutions to **modified gravity** and can overcome paradoxes of BHs, e.g., curvature singularity and Hawking information loss.

Mazur, Mottola, PNAS 101, 9545-9550 (2004); Mathur, Fortsch. Phys. 53, 793-827 (2005)

are solutions to GR in the presence of dark matter/exotic fields

Liebling, Palenzuela, LRR 20, 5 (2017); Brito+, Phys. Lett. B 752, 291-295 (2016)

- are not excluded by GW and electromagnetic observations
 Abbott+, ApJ 896: L44 (2020); Abbott+, PRL 125, 101102 (2020); Calderón Bustillo+, arXiv: 2009.05376 (2020); EHT, ApJ 875, L5 (2019)
- quantify the existence of horizons

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

6/23

Dark compact objects

We analyze a generic model which deviates from a black hole for its:

- Compactness since the radius of the object is at $r_0 = r_+(1+\epsilon)$
- "Darkness" which is related to the reflectivity of the object $\mathcal{R}(\omega)$

Cardoso, Pani, Nat. Astron. 1: 586-591 (2017)

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

7/23

Alternatives to black holes

	Model	Formation	Stability	GWs	
	Fluid stars	×	✓	✓	
	Anisotropic stars	×	✓	✓	I
	Boson stars & oscillatons	✓	✓	✓	Formation
-	Gravastars	×	✓	~	▲
	AdS bubbles	×	✓	×	No singularities
→	Wormholes	×	✓	~	No semiclassical
	Fuzzballs	×	×	~	paradoxes
-	Superspinars	×	✓	~	
	2-2 holes	×	×	~	Exotic matter
	Collapsed polymers	×	×	~	
	Quantum bounces / black stars	×	×	~	
	Quantum stars*	×	×	×	
	Fire-walls*	×	×	~	
					Cardoso, Pani, LRR 22:4 (2019)
Clies Mannie Ulaus dans a deale assessabilitation 1 2 Ct					
Elisa Maggio - How does a dark compact object ringdov					Strong Gravity Seminar @Perimeter 8/23

What is the gravitational wave signal that dark compact objects produce?

I

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

Pirsa: 20100005 Page 13/30

Quasi-normal mode spectrum

We can distinguish dark compact objects from BHs via quasi-normal modes.

We consider a gravitational perturbation

$$\frac{d^2\psi}{dz^2} + V(z,\omega)\psi = \mathfrak{g}$$

Detweiler, Proc. R. Soc. Lond. A 352 (1977)

- At infinity: outgoing waves
- At r_0 : ultracompact object with surface reflectivity coefficient $\mathcal{R}(\omega)$

$$\psi(r_0) \sim A_{\rm in} e^{-i\tilde{\omega}z_0} + A_{\rm out} e^{i\tilde{\omega}z_0}$$

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

Quasi-normal mode spectrum

We can distinguish dark compact objects from BHs via quasi-normal modes.

0.15 M(z) 0.10 0.05

0.00

0.15 $^{2}_{0.10}$ $^{0.15}_{0.05}$ $^{0.05}$

0.00

We consider a gravitational perturbation

$$\frac{d^2\psi}{dz^2} + V(z,\omega)\psi = 0$$

Detweiler, Proc. R. Soc. Lond. A 352 (1977)

$$\psi(r_0) \sim A_{\rm in} e^{-i\tilde{\omega}z_0} + A_{\rm out} e^{i\tilde{\omega}z_0}$$

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

QNMs of ultracompact objects

Static, perfectly reflecting $|\mathcal{R}(\omega)|^2 = 1$

For $\epsilon \to 0$, the deviations from the black hole QNM are arbitrarily large and the QNMs and are **low frequencies** and **long-lived**.

Cardoso, Franzin, Pani, PRL 116, 171101 (2016)

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

10/23

Gravitational-wave echoes

- The **prompt ringdown** is indistinguishable from that of a black hole since it is excited at the photon sphere.
- A modulated train of **gravitational-wave echoes** appear at late times due to trapped modes.

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

11/23

Pirsa: 20100005 Page 17/30

Template for echoes

The signal emitted by a dark compact object can be written in terms of the signal emitted by a black hole Mark+, PRD 96, 084002 (2017); Testa, Pani, PRD 98, 044018 (2018)

$$\tilde{Z}_{\mathrm{DCO}}^{\infty}(\omega) = \tilde{Z}_{\mathrm{BH}}^{\infty}(\omega) + \mathcal{K}\tilde{Z}_{\mathrm{BH}}^{\mathrm{H}}(\omega)$$

Transfer function

Parameters: • Standard BH ringdown: $M, \chi, A_{+,\times}, \phi_{+,\times}, t_0$

• 2 extra parameters: ϵ, \mathcal{R}

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

12/23

Pirsa: 20100005 Page 18/30

Template for echoes

The signal emitted by a dark compact object can be written in terms of the signal emitted by a black hole Mark+, PRD 96, 084002 (2017); Testa, Pani, PRD 98, 044018 (2018)

$$\tilde{Z}_{\mathrm{DCO}}^{\infty}(\omega) = \tilde{Z}_{\mathrm{BH}}^{\infty}(\omega) + \mathcal{K}\tilde{Z}_{\mathrm{BH}}^{\mathrm{H}}(\omega)$$

Analytical low-frequency template

EM, Testa, Bhagwat, Pani, PRD 100, 064056 (2019)

Transfer function

Parameters: • Standard BH ringdown: $M, \chi, A_{+,\times}, \phi_{+,\times}, t_{0_{\mathbf{x}}}$

• 2 extra parameters: ϵ, \mathcal{R}

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

12/23

Pirsa: 20100005 Page 19/30

Ringdown of dark compact objects

Membrane paradigm Damour, PRD 18, 10 (1978); Price, Thorne, PRD 33, 4 (1986)

A static observer outside the horizon can replace the interior of a perturbed BH by a perturbed **fictitious** membrane located at the horizon.

The Israel junction conditions $[[K_{ab}-Kh_{ab}]]=-8\pi T_{ab}$ impose that the membrane is a **viscous fluid** with shear viscosity η and bulk viscosity ζ .

We generalize the membrane paradigm to any dark compact object with a Schwarzschild exterior. EM, Buoninfante, Mazumdar, Pani, PRD 102, 064053 (2020)

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

14/23

Pirsa: 20100005 Page 21/30

Quasi-normal mode spectrum

The dark compact object is subjected to gravitational perturbations:

$$\frac{d^2\psi}{dz^2} + \left[\omega^2 - V(r)\right]\psi = 0$$

Regge, Wheeler, PR 108, 4 (1957) Zerilli, PRL 24, 13 (1970)

+ 2 boundary conditions:

At infinity: outgoing waves

$$\bullet \quad \text{At } r_0 \colon \frac{\psi'(z)}{\psi(z)} = \begin{cases} -\frac{i\omega}{16\pi\eta} - \frac{r_0^2 V(r_0)}{2\left(r_0 - 3M\right)} & \text{Axial} \\ -16\pi i\eta\omega + G(r_0, \omega, \eta, \zeta) & \text{Polar} \end{cases}$$

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

15/23

Page 22/30

Quasi-normal modes of dark compact objects

- The isospectrality of axial and polar modes in BHs is broken and the QNMs form a **doublet**.
- The measurement accuracy of the quasi-normal mode of GW150914 agrees with a dark compact object with $\epsilon \lesssim 0.1$.

EM, Buoninfante, Mazumdar, Pani, PRD 102, 064053 (2020)

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

16/23

Pirsa: 20100005 Page 23/30

Ringdown of dark compact objects

- The **prompt ringdown** is modified with respect to the BH case.
- At late time the prompt ringdown is dominated by the modified QNM of the object.
- Subsequent echoes are absent.

EM, Buoninfante, Mazumdar, Pani, PRD 102, 064053 (2020)

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

17/23

Universal axial quasi-normal mode

As the radius of the object approaches the photon sphere, the dark compact object has a universal QNM regardless its interior structure:

$$M\omega_2^{\text{axial}} = 0.3601 - i0.2149, \quad r_0 \to 3M$$

Caveat: gravastars

EM, Buoninfante, Mazumdar, Pani, PRD 102, 064053 (2020)

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

18/23

Detectability of GW echoes

• A tentative evidence for echoes in LIGO/Virgo data has been reported

Abedi+, PRD 96, 082004 (2017); Conklin, Holdom, PRD 98, 044021 (2018); Abedi, Afshordi, JCAP 11, 010 (2019)

3

• Independent searches argued that the statistical significance of echoes is low and consistent with noise

Westerweck+, PRD 97, 124037 (2018); Nielsen+, PRD 99, 104012 (2019); Uchikata+, PRD 100, 062006 (2019); Lo+, PRD 99, 084052 (2019); Tsang+, PRD 101, 064012 (2020)

Reviews

Cardoso, Pani, Living Reviews in Relativity **22**:4 (2019) Abedi, Afshordi, Oshita, Wang, Universe **6** no. 3, 43 (2020)

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

19/23

Pirsa: 20100005 Page 26/30

Constraints on the reflectivity

- For **perfectly reflecting** dark compact objects, the energy emitted in the echoes is larger than the energy emitted in the ringdown.
- LISA will be able to probe values of the **reflectivity close to the BH one**.

Testa, Pani, PRD 98, 044018 (2018)

EM, Testa, Bhagwat, Pani, PRD 100, 064056 (2019)

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

20/23

Pirsa: 20100005 Page 27/30

Resolvability of the doublet

EM, Buoninfante, Mazumdar, Pani, PRD 102, 064053 (2020)

We use the Rayleigh resolvability criterion:

$$\max[\sigma_{f_1}, \sigma_{f_2}] < |f_1 - f_2|$$
$$\max[\sigma_{Q_1}, \sigma_{Q_2}] < |Q_1 - Q_2|$$

where the uncertainties are computed with a Fisher analysis.

The resolution of the doublet is more challenging than the detection of the deviations from the BH quasi-normal mode.

Elisa Maggio - How does a dark compact object ringdown?

Strong Gravity Seminar @Perimeter

22/23

Conclusions and future prospects

- We can understand the nature of compact objects and look for new physics at the horizon scale through gravitational waves.
- Dark compact objects are not excluded by current GW measurements.
- We derived an analytical gravitational-wave template for the ringdown and the echo signal.
- Accurate echo templates are crucial for matched-filter searches.
- Full inspiral-merger-ringdown waveforms need to be developed.
- LISA will allow to perform unprecedented tests of the BH paradigm.

Strong Gravity Seminar @Perimeter

23/23

Pirsa: 20100005 Page 30/30