Title: Non-interactive zero-knowledge arguments for QMA, with preprocessing

Speakers: Andrea Coladangelo

Series: Perimeter Institute Quantum Discussions

Date: September 30, 2020 - 4:00 PM

URL: http://pirsa.org/20090023

Abstract: Zero-knowledge proofs are one of the cornerstones of modern cryptography. It is well known that any language in NP admits a zero-knowledge proof. In the quantum setting, it is possible to go beyond NP. Zero-knowledge proofs for QMA have first been studied in a work of Broadbent et al (FOCS'16). There, the authors show that any language in QMA has an (interactive) zero-knowledge proof. In this talk, I will describe an idea, based on quantum teleportation, to remove interaction at the cost of adding an instance-independent preprocessing step. Assuming the Learning With Errors problem is hard for quantum computers, the resulting protocol is a non-interactive zero-knowledge argument for QMA, with a preprocessing step that consists of (i) the generation of a Common Reference String and (ii) a single (instance-independent) quantum message from the verifier to the prover.

This is joint work with Thomas Vidick and Tina Zhang

Pirsa: 20090023 Page 1/38

Non-interactive zero-knowledge arguments for QMA, with preprocessing

Andrea Coladangelo, Thomas Vidick, Tina Zhang

Pirsa: 20090023 Page 2/38

Proof-system for an NP problem

Pirsa: 20090023 Page 3/38

Argument

Proof-system for an NP problem

Completeness: If *x* is a **yes-instance**, *P* is accepted with probability 1.

Soundness: If x is **no-instance**, any P^* is accepted with probability at most 1 - 1/poly(n)

Computationally bounded

Pirsa: 20090023 Page 4/38

Proof-system for an NP problem

The trivial protocol

Pirsa: 20090023 Page 5/38

Proof-system for an NP problem Zero-knowledge commitment

Pirsa: 20090023 Page 6/38

Pirsa: 20090023 Page 7/38

Proof-system for an NP problem

Zero-knowledge

Pirsa: 20090023 Page 8/38

Proof-system for an NP problem Zero-knowledge

Pirsa: 20090023 Page 9/38

Non-interactive zero-knowledge proof-systems

Pirsa: 20090023 Page 10/38

Non-interactive zero-knowledge proof-systems

Extended models:

CRS

01110010...

Pirsa: 20090023 Page 11/38

Input: $x = H = \sum_{r} C_{r}$ (on n qubits) Problem: Is lowest energy $< \alpha$ or $> \beta$?

Local Hamiltonian Problem

Pirsa: 20090023 Page 12/38

Input: $x = H = \sum_{r} C_{r}$ (on n qubits) Problem: Is lowest energy $< \alpha$ or $> \beta$?

Local Hamiltonian Problem

Each C_r only acts on a constant number of qubits.

Pirsa: 20090023 Page 13/38

Input: $x = H = \sum_{r} C_{r}$ (on *n* qubits) Problem: Is lowest energy $< \alpha$ or $> \beta$?

Local Hamiltonian Problem

Each C_r only acts on a constant number of qubits.

(Take
$$\alpha \approx 2^{-n}$$
 and $\beta \approx \frac{1}{poly(n)}$)

ground state

V samples $r \leftarrow [m]$. Measures energy of $|w\rangle$ with respect to C_r and accepts if the energy is low.

Input: $x = H = \sum_{r} C_{r}$ (on *n* qubits) Problem: Is lowest energy $< \alpha$ or $> \beta$?

Local Hamiltonian Problem

Each C_r only acts on a constant number of qubits.

(Take
$$\alpha \approx 2^{-n}$$
 and $\beta \approx \frac{1}{poly(n)}$)

ground state

V samples $r \leftarrow [m]$. Measures energy of $|w\rangle$

with respect to C_r , i. e. makes the measurement $\{C_r, \mathrm{Id} - C_r\}$: accepts if outcome is latter.

Interactive ZK protocol for QMA

[BJSW '16]

Step 1:

commitment to K

Step 2:

V samples $r \leftarrow [m]$. Measures energy w. r. t C_r "homomorphically". Returns encoded outcome to P.

$$r, \tilde{z} \longrightarrow$$

Step 3:

P checks validity of \tilde{z} . Proves that \tilde{z} decodes to low energy under key K, using a ZK proof for NP.

Interactive ZK protocol for QMA

[BJSW '16]

Step 1:

commitment to K

Step 2:

V samples $r \leftarrow [m]$. Measures energy w. r. t C_r "homomorphically". Returns encoded outcome to P.

$$r, \tilde{z}$$

(CRS)

Step 3:

P checks validity of \tilde{z} . Proves that \tilde{z} decodes to low energy under key K, using a NIZK proof for NP.

How to make it non-interactive?

Main principle: quantum teleportation!

V measures encoded state before she receives it. . .

(Need EPR pairs + homomorphic encryption)

Pirsa: 20090023 Page 18/38

A closer look:

• Local Clifford Hamiltonian.

• The encoding Enc.

• Quantum teleportation.

Pirsa: 20090023 Page 19/38

Local Clifford Hamiltonian

Local Clifford Hamiltonian Problem

Input: $x = H = \sum_{r} C_r |0^k\rangle \langle 0^k | C_r^* \rangle$

Problem: Is lowest energy $< \alpha$ or $> \beta$?

The C_r 's are k-qubit Clifford operators.

(Take
$$\alpha \approx 2^{-n}$$
 and $\beta \approx \frac{1}{poly(n)}$)

C is an *n*-qubit Clifford if for any $a, b \in \{0,1\}^n$, there are $a', b' \in \{0,1\}^n$ such that:

$$C X^a Z^b = X^{a\prime} Z^{b\prime} C$$

Local Clifford Hamiltonian

Local Clifford Hamiltonian Problem

Input: $x = H = \sum_{r} C_r |0^k\rangle \langle 0^k | C_r^* |$

Problem: Is lowest energy $< \alpha$ or $> \beta$?

The C_r 's are k-qubit Clifford operators.

V samples $r \leftarrow [m]$. Applies C_r^* and measures. Accepts if outcome is $\neq 0^k$.

Pirsa: 20090023

Interactive ZK protocol for QMA

[BJSW '16]

 $+ \operatorname{Enc}_K(|w\rangle_{x})$

Ground state

Step 2:

V samples $r \leftarrow [m]$. Applies C_r^* "homomorphically" and measures. Returns encoded outcome to P.

$$r, \tilde{z}$$

Step 3:

P checks validity of \tilde{z} . Proves that \tilde{z} decodes to $\neq 0^k$ under key K, using a NIZK proof for NP.

Pirsa: 20090023

The encoding Enc

 $Enc_K: 1 \text{ qubit} \rightarrow L \text{ qubits}$

- (i) Measuring in standard basis reveals if state is a valid encoding under *K*.
- (ii) **Homomorphic property**: Let ${\cal C}$ be a single-qubit Clifford, and $|\psi\rangle$ a single-qubit state. Then,

$$C^{\otimes L}$$
 $\operatorname{Enc}_K(|\psi\rangle) = \operatorname{Enc}_{K'}(C|\psi\rangle)$

where K' is efficiently computable given K and C.

(iii) Authentication property: Let $K' \equiv K'(K, {\color{red} {\cal C}})$.

$$\operatorname{Enc}_{K}(|\psi\rangle) \longrightarrow \operatorname{Enc}_{K'}(C'|\psi\rangle)$$

Hard for bounded adversaries

$$C' \neq C$$

Quantum teleportation

The Bell basis measurement and the application of U commute.

Pirsa: 20090023 Page 24/38

Quantum teleportation

Pirsa: 20090023 Page 25/38

2-message protocol for QMA

V creates EPR pairs. Sends second halves to P.

Samples $r \leftarrow [m]$. Applies $(C_r^*)^{\otimes L}$, then measures.

 r, \tilde{z}

Step 2:

P samples key K. Computes $\operatorname{Enc}_K(|w\rangle_{\chi})$. Teleports. P sends a,b, commitment to K, NIZK proof that a,b,\tilde{z},K is consistent with $\neq 0^k$. $\operatorname{Enc}_K(|w\rangle_{\chi})$

commitment to K, a, b, NIZK proof

Bell basis measurements

The protocol through the lens of teleportation

Pirsa: 20090023 Page 27/38

The protocol through the lens of teleportation

Pirsa: 20090023 Page 28/38

The protocol through the lens of teleportation

Pirsa: 20090023 Page 29/38

2-message protocol for QMA, with preprocessing

 $|w\rangle_{\chi}$ Ground state

V creates EPR pairs. Sends second halves to P. Samples $r \leftarrow [m]$. Applies $(C^*)^{\otimes L}$ then mass

Samples $r \leftarrow [m]$. Applies $(C_r^*)^{\otimes L}$, then measures.

Step 2:

P samples key K. Computes $\operatorname{Enc}_K(|w\rangle_{\chi})$. Teleports. P sends a,b, commitment to K, NIZK proof that a,b,\tilde{z},K is consistent with $\neq 0^k$. $\operatorname{Enc}_K(|w\rangle_{\chi})$.

commitment to K, a, b, NIZK proof

Bell basis measurements

There is an issue (with soundness). .

r cannot be sent by V in the clear.

Pirsa: 20090023 Page 31/38

There is another issue (with soundness). .

Pirsa: 20090023 Page 32/38

There is another issue (with soundness). .

The two steps commute only if P's action does not depend on \tilde{z} !

Pirsa: 20090023 Page 33/38

A fix for the issue

V does not send r and \tilde{z} in the clear.

Instead, V sends a homomorphic encryption of r and \tilde{z} .

P "knows" everything under the hood of the encryption. So, *P* can compute the NIZK proof homomorphically.

Pirsa: 20090023 Page 34/38

A fix for the issue

V does not send r and \tilde{z} in the clear.

Instead, V sends a homomorphic encryption of r and \tilde{z} .

P "knows" everything under the hood of the encryption. So, *P* can compute the NIZK proof homomorphically.

Proof for QMA \rightarrow argument for QMA

Pirsa: 20090023 Page 35/38

2-message protocol for QMA, with preprocessing

 $x = \sum_{r} C_r |0^k\rangle \langle 0^k | C_r^* | w \rangle_{x}$ Ground state

V creates EPR pairs. Sends second halves to *P*.

Samples $r \leftarrow [m]$ and (pk, sk). Applies $(C_r^*)^{\otimes L}$, then measures.

Step 2:

P samples key *K*. Computes $\operatorname{Enc}_K(|w\rangle_{\chi})$. Teleports. *P* sends *a*, *b*, commitment to *K*,

Hom. Enc. of NIZK proof that r, a, b, \tilde{z}, K is consistent with $\neq 0^k$. Enc $_K(|w\rangle_X)$

commitment to K,

a, b

a, b, Hom. Enc. NIZK proof

Bell basis measurements

Pirsa: 20090023 Page 36/38

Reductions to Hamiltonians

Current approach:

Instance x of a QMA problem with verifying circuit Q

Verifying circuit Q_x

Local Clifford Hamiltonian $H(Q_x) = \sum_r C_r$

Check that witness received from P has low-energy with respect to $H(Q_x)$

Instance-independent approach:

QMA problem with verifying circuit Q

Local Clifford Hamiltonian $H(Q) = \sum_{r} C_{r}$

Pirsa: 20090023 Page 37/38

Recap

Assuming LWE, we get a 2-message argument for QMA, in which the first message from V to P is *instance-independent*.

Related results: [Broabent & Grilo '19, Alagic et al '20]

Open question:

Can we have a truly non-interactive protocol for QMA in the CRS model (or in a model with shared EPR pairs?)

Thank you!

Pirsa: 20090023 Page 38/38