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Abstract: Entanglement entropy quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy
of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this work, we propose a generalization of the
guantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy
generaizations, are defined by analytic continuation of a gravitational path integral on replica geometry with a co-dimension-2& nbsp;brane at the
boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective
entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal
surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the
Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS
boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat
gpacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensiona maximally extended
Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete
understanding of quantum information properties in general dynamical geometries. By introducing ancilla systems, we show how quantum
information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe
(without spatial boundary) case and discuss how it is related to open universe.
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Outline

* Motivation: generalization of quantum field theory entanglement
entropy to gravitational systems

* Review of QFT entropy

* Definition of the generalization—effective entropy

* Quantum extremal surface and entanglement island
* Example 1: Eternal black hole

* Example 2: 2d closed universe

* Random tensor network model

* Discussion and open questions

 Ref: Xi Dong, XLQ, Zhou Shangnan, Zhenbin Yang arxiv 2007.02987
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Motivation

* Entropy of an evaporating black hole
* Hawking radiation seems to have an

increasing entropy, but unitary requ

ires

the entropy to decrease back to zero.

* Page curve.

A
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Motivation

* Physically this means the Hawking radiation looks thermal but actually has
less entropy, just like a pure state could look thermal on a subsystem
(eigenstate thermalization hypothesis)

* Entropy is related to geometry (area) in Bekenstein
-Hawking formula, and Ryu-Takayanagi formula.

|y al
* Sa = o5t Spuie (Za)
(Ryu-Takayanagi ‘06, Faulkner-Lewkowycz-Maldacena ‘13)

* Recent excitement: the Page curve has a
geometrical interpretation
(Penington, ‘19, Almheiri, Engelhardt, Marolf, Maxfield 19 and more recent works)
* The relation between entropy and geometry seems to go beyond
holographic duality and anti-de Sitter space.

* We want to define subregion entropy in a gravitational system, and study its
properties.

A

N
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Entanglement entropy in quantum field theory

* Replica trick S,,(A) = —ﬁlog tr(py),S = lin} S, (4)
_ o,
* p can be expressed by a path integral

Z
e o~ (—D)Sp — tr(p™) = ]VZ[+(‘® path integral on branch covering manifold.
M

= TS -~
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Entanglement entropy in quantum field theory

* dA is a co-dimensional 2 conical defect. Going around dA, the conical
angle is 2nrm.
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Generalization to systems with dynamical gravity

* Intuition: at least when quantum fluctuation of geometry is weak (like
where we live now), the generalization of quantum field theory entropy
should exist.

* Naive guess: take QFT formula and integrate over geometry.
D¢€_S[¢] ngD(pe—S[CP,g]—S@rav

o e—(n—l)Sn — Lyt (4) — an(A) _s
Z}\l,[ an D¢e—5[¢] ngque—SO[ff),g]—Sgrav

* Problem: (1) what gravitational action should we choose? What
determines the difference between numerator and denominator? (2)
the ratio is not very natural.

* If we use the metric of branch covering manifold M, (A), denoted g,
and add S;q, = Sgnlg] the conical singularity will be resolved. Even in
Gy — 0 limit the entropy does not return to the QFT value.
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Our proposal: effective entropy

(D

M, (A) contributing Saddle point for our action
165 GFRentropy Sorrl®, g1 + Spn[9]
(n = 2) 1—n

+ |0A|

4Gy
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irsa:

Our proposal: effective entropy

* We propose to use Sgy[g] of the manifold without branch-covering,
while QFT lives on the manifold g with branch cover.

. . - 1-
* In other words, we add the gravity action Sgy|g] = Seyld] + 46—” |0A|
N
* The last term is a brane source term that cancels the effect of the conical
singularity.
* Another replica trick:

~ ~1,Nn—1
e~(=DSn — Jim f D gD e~ SerTI#a1-Seulal i oA
m—-—-—-n nm

* n + m copies of the system. Brane at the boundary of A.
* Trivial saddle point M, (A) x M™
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Gauge invariance

* In dynamical geometry, the location of region A needs to be decided in
a gauge invariant way

* There are different physical ways of fixing the region.

AdS Oksym]-ﬂ\)-ﬁc(;d}, ’HO\i’ o l:f)wwwmj

Fix 5/70#7'0&( methC

of A
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Quantum extremal surface

* The branch covering manifold M, (A) is a saddle point, but may not be
the dominant one

* Other possibilities: replica wormholes (penington et al)
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Quantum extremal surface (QES)

* If the replica geometry preserves Z,, symmetry, we can do a quotient
similar to the AdS/CFT Case (Lewkowycz-Maldacena '13)

l/ No conical defect

A

- Conical defect with angle 6 = %n
/ —
I
n

* n = 1 leads to the quantum extremal surface formula

|01

N |01 QFT(n) _
S (M) =~ (1 - —) [4GN SA% — Sa = extp e + 5401
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Physical interpretation

* When geometry is dynamical, density operator p, of the QFT is not well-

defined.

 Correlation functions are still well-defined (if we define location of the

region in a gauge invariant way).

* We can view the effective entropy as a measure of correlation functions

in A for low energy operators below a cutoff.

* Renyi entropy is related to an average of correlators.

2) . .
e e754 =Y (T,)? average over 1-point functions,

for an orthonormal basis of operators in A.

. (1)
€ bA = Z <ﬂ1]><ﬂ1]ﬂ12>"'<21rl,—1 T(In—2><T(IN—'1>

al,a2,...,an—1
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2) . .
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(n)
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<CZ_‘”1 > <ﬂ1-1 ﬂ12>"' <ﬂ1‘r1,—1 :Z—’(JH—Q><T(IH—] )
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Physical interpretation

* When geometry is dynamical, density operator p, of the QFT is not well-
defined.

 Correlation functions are still well-defined (if we define location of the
region in a gauge invariant way).

* We can view the effective entropy as a measure of correlation functions

in A for low energy operators below a cutoff. JfJf B R/

* Renyi entropy is related to an average of correlators. (
(2) . :

« e754 =Y (T,)? average over 1-point functions,

for an orthonormal basis of operators in A. =

. (n) - o =
€ A= Z <T(H><Tu.1:r(l‘2>"-<ﬂt,,,_1T(J,,_QMT(I,,_l)(l)(’7( 100 = I

A1,a2,....0n -\ \__ﬁ ) 3 W g’ Rprplipe
24

n
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Physical interpretation

* When geometry is dynamical, density operator p, of the QFT is not well-
defined.

 Correlation functions are still well-defined (if we define location of the
region in a gauge invariant way).

* We can view the effective entropy as a measure of correlation functions

in A for low energy operators below a cutoff. %Jf B R/
* Renyi entropy is related to an average of correlators. (
(2)
-5

e e%a =Y (T,)? average over 1-point functions,
for an orthonormal basis of operators in A.

_g(m < ) .
- bA = Z &<:Z—‘al>ﬁ ﬂ11ﬂ122:'<ﬂlfl,—lT(Irr—2><T(Iir—1><[>< ’7< |>i ' i

a1,a2,...,0n ki 0 A~
24 \/\/—~/

n
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Quantum extremal surface (QES)

* If the replica geometry preserves Z,, symmetry, we can do a quotient
similar to the AdS/CFT Case (Lewkowycz-Maldacena '13)

l/ No conical defect

A

- Conical defect with angle 6 = %n
/ o
I
n

. = 1 leads to the quantum extremal surface formula

_ 1 ol " 01| QFT
S(M),:(l_ﬁ HT]L+S%;M )] — SA:ext1[4GN+SAU[
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Physical interpretation

* When geometry is dynamical, density operator p, of the QFT is not well-

defined.

 Correlation functions are still well-defined (if we define location of the

region in a gauge invariant way).

* We can view the effective entropy as a measure of correlation functions

in A for low energy operators below a cutoff.
* Renyi entropy is related to an average of correlators.

_¢@

e e%a =Y (T,)? average over 1-point functions,

for an orthonormal basis of operators in A.

O y
— (11 Tu 1 T(IQZ» an a
(e8] ag

5
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Further comments

* The extremal surface formula

0I] | oqFT
SA%: exty {E + SAU[

depends on UV cutoff at the boundary of 4, but not that of I. If we
change the UV cutoff at dI, there should be a renormalization of G
correspondingly, which preserves S,

* This is consistent with the behavior of QFT
entropy. The cutoff dependence is physical.

* A nontrivial extremal surface requires

|01 QFT QFT QFT QFT QFT _ |oI|
E-I_SAUI <SSO P2ST =258 —Saun >E

Pirsa: 20090018 Page 27/43



Example 1: eternal black hole

* Maximally extended blackhole geometry in
4d flat space

* Region A is the exterior of a spherical shell
around the black hole

* Only considering s-wave mode described by a 2d CFT

. Qualitatively similar to other recent works (Gautason et al, Anegawa et al, Hashimoto et
al, Hartman et al) but for a different state.

* Choice of the state: Weyl transformation

U = sinhu,V = sinhv

———-

3
9 4r ¥

ds® = _'Q(U- p)dudy; g(u. (,') — _H exp ( — —) cosh u cosh v
r Ty
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Example 1: eternal black hole

* The coordinate transformation leads to a state that approaches vacuum
for large u or v. This avoided back-reaction to lose control.

e An entanglement island appears (d) jg %107
inside the horizon. 4 ' | ) 5
* Distance to the horizon < cG . 2]
+ 0 0
s,
=20
-4 , -5
S -5 0 5
vp~e P~ —ugy u-v
2
ur ~t+ log lgfrf%{ ~Uug — (log 12672[{ — 1+ log(QR))
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Example 1: eternal black hole

* Maximally extended blackhole geometry in
4d flat space

* Region A is the exterior of a spherical shell
around the black hole

* Only considering s-wave mode described by a 2d CFT

. Qualitatively similar to other recent works (Gautason et al, Anegawa et al, Hashimoto et
al, Hartman et al) but for a different state.

* Choice of the state: Weyl transformation

3 U = sinhu,V =sinhv
5 ,_er - )
ds®* = ——Fexp| —— ) dUdV
r rH —
3
5 4r ¥
d,s"‘ — —-g(u_ l.’)dudl.‘: g('u_ (,‘) — _H exp ( - —) COSh Uu (',()Sh v
v rH
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Example 2: 2d closed universe

* Euclidean AdS path integral as a density matrix p4
e CFT matter field
* For single replica, dominant geometry is a disk

e With multiple replica, there could be an

Trivial geometry Nontrivial geometry

Entanglement island
n=2 n=2

inn—1
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Example 2: 2d closed universe

* Page-like transition as a function of matter central charge c or
boundary length £ (in the unit of AdS radius)

entropy
900
800

i o $1(c)
700 /»:;”——f—’—— $2(c)

S [ min(S1(c), $2(c))

600 o~

C /‘//
500£ ‘“/

['/‘ I S SN T S S T Lo s 1 e

3 250 300 350 400
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(a) € = 0.1, So = 200, 27 = 20, B = 20.

750

700 |-

650 -

600 |-

. s1(6)
) / S$2(8)
/ min($1(5), $2(6))
v
/
% I L L L g
15 20 25 30

(b) € = 0.1, So = 200, 27¢h, = 20, ¢ = 300.
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Example 2: 2d closed universe

* Physical interpretation: Sachdev-Ye-Kitaev model (SYK) turned sideways
» SYK model thermal partition function Z = tr(e F¥)

* Approximately dual to AdS JT gravity couples with fermions
* Now we want to obtain a state with the SYK time direction viewed as

space.
| \;
(] _N(H —WX\D
ﬁ‘? X-“—L}’X - € '

p(Y4,¢-) = TrP (eﬁ/szmf(f/ ? dux(u)4(w) =B/ 2Hsy K= [z dux(w)v- M)
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Example 2: 2d closed universe
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(n
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Example 2: 2d closed universe

* Physical interpretation: Sachdev-Ye-Kitaev model (SYK) turned sideways
» SYK model thermal partition function Z = tr(e F¥)

* Approximately dual to AdS JT gravity couples with fermions
* Now we want to obtain a state with the SYK time direction viewed as
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'—CI - M(Haf J' O_C_@

(OR

p(w+qui_)::1y¢>(etvszEK-b%’ dux(w)y 4 (u) ,~B/2Hsy K = J@uduxﬁow—hw)
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Random tensor network models

* Purpose: understand more explicitly the guantum information properties
related to effective entropy

* Random tensor networks in holographic duality (Hayden et al 2016)

* A map from bulk to boundary ®)

?WW‘?TT

MM&U

* Random tensors are random projections. Hj, @ H, — Hpg
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Random tensor network models

* Each random tensor is a random state with unitary invariant measure.
* Renyi entropy can be computed by averaging over randomness.

* In large bond dimension limit, tensor network models satisfy quantum
extremal surface formula

+ ST = log D |yal + SSpr(Za)
* QFT refers to the bulk matter state.
* 3-tensor model: %

S

&FT
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Random tensor network models

* In the case analogous to AdS/CFT, there is an isometry from bulk to
boundary. All bulk states of the QFT
has a boundary dual.

* Tensor network states can
be defined on general graph
geometry.

* In general geometry, there is no
isometry to the boundary

* There may be even no boundary.
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Correlation functions and super-density operator

* Without bulk-to-boundary isometry, the tensor network model is like post-
selected quantum mechanics

 Correlation functions can not be determined by a density operator

* |f we want to determine the most general correlation function, we need a
“super-density operator” of bigger dimension S
2

[ =N

Cabe = Po <> Oa 908 =
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Super-density operator

* Physically, the superdensity operator is the density operator of the
system coupled with ancilla. (s cotler, c M Jian, xLQ, F Wilczek 18)

* Defining the super-density operator enables us to compute entropy.

* In large bond dimension limit, S/(f:) satisfies the quantum extremal
surface formula Avp

aa=
el 7

1

OaAB =
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Operator reconstruction

* In AdS/CFT, operators in the bulk can be mapped to boundary.

* For a boundary region A, only bulk operators in the entanglement wedge
2, can be reconstructed in A.

* Island I is the analog of entanglement wedge.

* Not all operators in the island region can be reconstructed in A. A small
perturbation in I can be reconstructed.
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Closed universe

* For closed universe with pure state matter, small operators outside the
entanglement island ¢ can also be mapped to A.

L1 L2 L1 L2
(—( =~ () =(4)
[ IM(4q)
4 O b O O SXN
= CIM(6,)
W W

* Different operator ordering  M(¢pnp) = M(ép)M(p)
M(dgnq) = M(ng)M(dq)

* Physical interpretation: small perturbation in I is part of A. Small
perturbation outside I4 is maximally entangled with A.
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Conclusion and open questions

* Effective entropy can be defined, at least for weak gravity.

* Quantum extremal surface and entanglement island appears in
general geometries beyond AdS.

* |s there a unigue way to determine the location of region A?
* |s this entropy well-defined beyond low energy effective theory?
* |s quantum gravity from post-selected quantum mechanics?

* How to develop a more covariant understanding to the tensor
network state? Maybe related to the space-time random tensor
networks (XLQ and Zhao Yang https://arxiv.org/abs/1801.05289)

Pirsa: 20090018

Page 43/43



