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Abstract: We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs (thermal) state. The
classical analog of this problem, known as learning graphical models or Boltzmann machines, is a well-studied question in machine learning and
statistics. In this work, we give the first sample-efficient algorithm for the quantum Hamiltonian learning problem. In particular, we prove that
polynomialy many samples in the number of particles (qudits) are necessary and sufficient for learning the parameters of a spatialy local
Hamiltonian in|_2-norm.

Our main contribution is in establishing the strong convexity of the log-partition function of quantum many-body systems, which along with the
maximum entropy estimation yields our sample-efficient algorithm. Classically, the strong convexity for partition functions follows from the
Markov property of Gibbs distributions. This is, however, known to be violated in its exact form in the quantum case. We introduce several new
ideas to obtain an unconditional result that avoids relying on the Markov property of quantum systems, at the cost of a slightly weaker bound. In
particular, we prove alower bound on the variance of quasi-local operators with respect to the Gibbs state, which might be of independent interest.

Joint work with Srinivasan Arunachalam, Tomotaka Kuwahara, Mehdi Soleimanifar
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Learning graphical models

Upcoming section

Learning graphical models
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Learning graphical models

Classical graphical models

e Also known as Markov random fields, Boltzmann Machines,
elke.
e Fix a graph, which defines conditional independence.
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Learning graphical models

Classical graphical models

e If the distribution is positive, then Hammersley-Clifford
theorem ensures that the distribution is a Gibbs state given by

e—.a’ Z;'wj h;_j(x,;.x‘f)

Pg(x1,%2,...X) = 7

Here Z; is the partition function.
e The classical hamiltonian respects the g%phical structure.

e A widely studied example is the Ising model, where the

hamiltonian is
E i jXiXj + E 0ix;.
i

I~
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Learning graphical models

Importance of graphical models

e Bioinformatics (protein-protein interaction graph).

Image source: Knowledge discovery in Proteomics, Natasa Przulj (ed. Igor Jurisica, Dennis Wigle)
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Learning graphical models

Importance of graphical models

e Statistics and machine learning (high dimensional statistics).

e (Can several parameters be learned with a few samples? The
promise is of sparse graphs.
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Learning graphical models

Importance of graphical models

e Statistics and machine learning (high dimensional statistics).
e (Can several parameters be learned with a few samples? The
promise is of sparse graphs.
e Statistical physics (inverse Ising problem): infer the

interaction based on observations (Chayes, Chayes, Lieb
[Comm. Math. Phys. 1984]).

Inverse statistical problems: from the inverse
Ising problem to data science

H. Chau Nguyen, Riccarde Zecchina & Johannes Berg &
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Learning graphical models

e Imagine samples are being given from the distribution Pg, for
the Ising model.

o We are promised that —1 < p;j,6; < 1 (natural assumption in
practise) and that the underlying graph has small degree
(graph structure unknown).
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Learning graphical models

e Imagine samples are being given from the distribution Pg, for
the Ising model.

o We are promised that —1 < p; j,#; < 1 (natural assumption in
practise) and that the underlying graph has small degree
(graph structure unknown).

e How many samples are needed to output real numbers
{u ;. 0;} such that:

e (., guarantee: we have \,u;’-__j- —pij| £eand |6; — 6| < e.
e (, guarantee: we have ‘/Z;m_; \p’;‘j —t5:|* < & and
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Learning graphical models

A series of classical results

e Several old works have tackled the learning problem in special
settings.

e Chow, Liu [IEEE IT 1963]; Ackley, Hinton, Sejnowski
[Cognitive Science 1985]; Toshiyuki [PRE 1998], etc.

e Successful line of work for graphs with /., learning.

e Bresler [STOC 2015]; Vuffray, Misra, Lokhov, Chertkov
[NeurlPS, 2016]; Klivans, Meka [FOCS, 2017], etc.

e Sample complexity is near optimal, roughly e®(3) log Jﬂﬂ

e Time complexity is O (|G|?). +
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Learning graphical models

The talk so far...

e |Learning graphical models is an important task.

e Several classical algorithms achieve this for learning in £
norm. Sufficient to infer the structure of the graph.

e Perspective: number of unknown graphs of constant degree
on |G| vertices is ~ e|f|loglCl).

e Thus, a sample complexity of e“(?) log |G| is a massive
reduction.
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Learning quantum Hamiltonians

Upcoming section

Learning quantum Hamiltonians
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Learning quantum Hamiltonians

Quantum many-body systems
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Learning quantum Hamiltonians

e A local hamiltonian describes physical interactions:

m

Hip) = Z,u{fE;_.
=1

where —1 < 1y < 1, ||E¢||lsc < 1 (spins don't interact too
strongly).

e E; are local operators, they act on closeby spins. Example,
pauli operators with small weight.

e Gibbs state is gives by
i o—BH(1) O
() = ——.
G Z(1)

where Zz(p1) = TL‘[e_-‘?H(“]] is the quantum partition function.
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Learning quantum Hamiltonians

Motivation to learn a quantum Hamiltonian

e Several recent learning results in varying domains.

e Sample complexity of supervised learning: Arunachalam, de

Wolf [CCC, 2017].

e Shadow tomography: Aaronson [STOC 2018]; Huang, Kueng,
Preskill [Nat. Phys. 2020].

e Quantum Boltzmann machines: Amin, Andriyash, Rolfe,
Kulchytskyy, Melko [Phys Rev X, 2018].
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Learning quantum Hamiltonians

Motivation to learn a quantum Hamiltonian

e The ‘inverse problem’: finding the complex interactions in
real-world materials.

e The lattice structure can play a crucial role in the physics of
the system.

e Type of the interaction is important for classifying the phase of
matter.

e Experimental push: Zhao et. al. [Science, 2020], Sibille et. al.
[Nat. Phys., 2020], etc.

e Gibbs sampling is taking a central stage in quantum
algorithms and learning (quantum SDP solver of Brandao,
Svore [FOCS 2017] & subseqeent works; quantum simulated
annealing Montanaro [Proc. Roy. Soc. 2015]; Harrow, Wei
[SODA, 2020]; so on).

e Verification of the Gibbs sampler is an inevitable problem.
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Learning quantum Hamiltonians

Prior works

e Set up a linear system of%quations, which can be inverted to
obtain the parameters /.

e Bairey, Arad, Lindner [PRL, 2019]; Evans, Harper, Flammia
[2019]; Qi, Ranard [Quantum, 2019].

e Applies to Gibbs states or ground states or high energy
eigenstates.

e But rigorous guarantee on invertibility of the linear system not
present.
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Learning quantum Hamiltonians

e We consider a hamiltonian H(;z) on a geometrically local
graph in finite dimensional space. Recall that

H(p) =Y )1 jueEe and Ey is local.

Theorem
We give an algorithm that fails with tiny probability 6. Whenever

it succeeds, it outputs a 1’ that approximates 11 in {> norm =. The
number of samples needed is

O(@L-m3logm).

3¢ ; g2 )
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Learning quantum Hamiltonians

e We &onader a hamiltonian H(t) on a geometrically local
graph in finite dimensional space. Recall that

H(p) =Y )1 jteEe and Ey is local.

Theorem

We give an algorithm that fails with tiny probability 6. Whenever
it succeeds, it outputs a 1’ that approximates 11 in {> norm =. The
number of samples needed is

3¢
e - m
Y -~ — i o
[’ g2 & 0

Theorem
In any algorithm with (> guarantee =, sample complexity must be
at least ‘/_’ O We provide a classical example for this.
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Learning quantum Hamiltonians

Our results

e Algorithm consists of quantum measurements on small
number of qubits, followed by classical postprocessing.

e Time efficiency in some cases (discussed later).
A
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Learning quantum Hamiltonians

Comparison with prior work

e Classical results:

e are time efficient and sample near-optimal. We are time
efficient conditionally and polynomially optimal in sample.

e They recover the graph, as long as it is low degree. We need
the graph to be geometrically local (such as a lattice or a
combination of lattices).

e They work in /., guarantee, as it is enough to determine the
graph. {5 norm is costly for them: \/m samples needed even
classically.
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Learning quantum Hamiltonians

Comparison with prior work

e Quantum results.

e Sample efficiency in other results is conditional: it depends on
properties of the linear system. We are provably sample
efficient.

0,
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Learning quantum Hamiltonians

The talk so far...

e Learning quantum many-body Hamiltonian is a natural
generalization of learning graphical models.

e We give an algorithm that learns a lattice Hamiltonian under
(5- guarantee. Sample complexity is =~ m> and one cannot do

better than ~ /m.

e Time efficient in some regime. Earlier works were time
efficient, but sample complexity not guaranteed.
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Techniques involved

Upcoming section

Techniques involved
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Techniques involved

The marginals of a Gibbs state uniquely determine the
Hamiltonian.

Let H(u) = X0 ek
Consider the expectation values e, = Tr[E;pg(11)], for all .

If there is some 1/ with
Th(Eeps ()] = TelEeps(i)]. VL.

then u = .
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Techniques involved

Sufficient statistics

e The idea goes back to Jaynes [1957].

e Used extensively in the classical literature. See Kato, Brandao
[Comm. Math. Phys, 2019] or Brandao et. al. [ICALP 2019]

for applications to quantum Markov chains or quantum
algorithms.

e Learning method: compute the expectation values e, €xactly.
Then obtain ;1 (see Kim, Swingle [PRL 2014]).
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Techniques involved

e Sufficient statistics can be visualized using the partition

function Zg(p) = Tr[e=#H(1)].

e The log-partition function log Z3z(;t) is a convex function of /.

log Z

M
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Techniques involved

e |t can be shown that

dlog Zs(1t)

— f —
@L t{) '!_J' {

for all ¢ (recall statistical mechanics course... partition
function contains all the information).

log Z

/

T
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Techniques involved

e |t can be shows that

dlog Zs(1t)

—_ f ey —
: t{) '!_J' {

for all ¢ (recall statistical mechanics course... partition
function contains all the information).

log Z

1L
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Techniques involved

e Suppose we estimate e, and obtain ;.

e Then more “curved” the curve is, closer our estimate 1/ is to
1T

log Z

T
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Techniques involved

Strong convexity of log-partition function

e We show that the log-partition function is strongly convex,
which says its second derivate at every point, along every
direction pair, is large.

Theorem (Main technical result)
It holds that

— B ac’

V2logZy = = 2 1.9
m
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Techniques involved

Strong convexity of log-partition function

e We show that the log-partition function is strongly convex,
which says its second derivate at every point, along every
direction pair, is large.

Theorem (Main technical result)
It holds that

FE i,
e—.fL 3¢

VologZa e — " ]
m

Classically, a stronger result is true: %2 log Z3 = e~ P31, This still
leads to polynomial sample complexity, with m® — m.
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Techniques involved

Interlude: strong convexity in classical world

e Essential tool in algorithms based on convex optimization.
e Many of the efficient classical algorithms need to establish
strong convexity of some function.

e For graphical models, this reduces to proving that variance of
local operators with respect to Gibbs state is large.

Page 34/45
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Techniques involved

e Instructive example: consider the Ising model with
H=—-31 ofof,.

e Magnetization is of interest: M => 7" o%.

e Computation reveals that the variance of the magnetization
Tr[M?pg] — Tr[Mps]? is proportional to m.

e |n other words, with high probability, the value of
magnetization concentrates around Tr[Mpg] £ Q(/m)>

e We do not expect the value to concentrate any better. For
instance, Tr[Mpg| £ 10.23 does not happen.
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Techniques involved

e Several works have shown (Araki [Comm. Math. Phys. 1967];
Frohlich, Ueltschi [Comm. Math. Phys. 2015]; Kliesch et. al.

[Phys Rev X, 2014]) that for small 5 and M = ). G;, where
G; is local,

Tr[M?p5] — Te[Mps]* S O (m).
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Techniques involved

Proving strong convexity: variance of quasi-local operators

e Classically, given a hamiltonian H(z) and some other local
operator L(v) = >, , v¢E¢, we can prove that

Tr[L(v)?pa(u)] — Tr[L()ps(u)]* > €78 - D v7.

e This directly leads to strong convexity of log-partition
function.

e This is much harder quantumly and we further need to show
this for quasi-local operators L(1), which have decaying
locality.

e We prove that

LR pa ()] = Tr[L)pa () > =L 302
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Techniques involved

Proving strong convexity: variance of quasi-local operators

e Step 1: Use quantum belief propagation (Hastings [PRB
2007], Kim [2017], Kato and Brandao [Comm Math Phys,
2018]) to reduce strong convexity to proving variance lower
bound of quasi-local operators.

e Step 2: Use local unitaries to make the problem local:

1
0 = @i = 0— 0]

(Fourier analysis, anyone?)

e Prove variance lower bound for this local operator O; and use
known results (Arad, Kuwahara, Landau [J. Stat. Mech.,
2016]) to make statements about O.
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Techniques involved

log Z

e Finding 11* is same as minimizing the function

log Z5(1) + 3 Z Le€p.
(
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Techniques involved

e Minimize log Zs(1t) + 3>, peee, which has a unique
minimum p*.
e One can use the gradient descent algorithm.

e Time efficient if the partition function Zz(i') at every 1/ in
the region can be computed efficiently.

e Thus, time efficient at high fémperature (Harrow, Mehraban,
Soleimanifar [STOC 2020]; Kuwahara, Kato, Brandao [PRL,
2020]) and in the stoquastic case (Bravyi, Terhal [SIAM J
Comp, 2008]).
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Techniques involved

The talk so far...

e Sufficient statistics gives a natural approach to the learning
problem.

e We prove a robust version of sufficient statistics approach.

e Reduces to proving variance lower bound on quantum
many-body Igcal operators.

e Similar to classical case, we expect this to have further
applications.
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Techniques involved

Future directions: sufficient local statistics

e Can we modify sufficient statistics such that sy can be
inferred by computing e/, where ¢ is geometrically close to /.

e Then estimation of uy will be a local procedure.
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Techniques involved

Future directions: sufficient local statistics

e This may be useful in obtaining time efficient results.
e Can be established in the commuting case.

o Time efficient learning algorithm with near optimal sample
complexity in general case?
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Techniques involved

Future directions

e |Improving the strong convexity result to be independent of m.
A central problem in condensed matter physics, on variance of
operators.

e Qur procedure reduces the variance problem to a local region,

which leads to a loss. Can this be avoided?
O,
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Techniques involved

Thank you for your attention!

Pirsa: 20090017 Page 45/45



