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Abstract: We reconsider the black hole firewall puzzle, emphasizing that quantum error-correction, computational complexity, and
pseudorandomness are crucia concepts for understanding the black hole interior. We assume that the Hawking radiation emitted by an old black
hole is pseudorandom, meaning that it cannot be distinguished from a perfectly thermal state by any efficient quantum computation acting on the
radiation alone. We then infer the existence of a subspace of the radiation system which we interpret as an encoding of the black hole interior. This
encoded interior is entangled with the late outgoing Hawking quanta emitted by the old black hole, and is inaccessible to computationally bounded
observers who are outside the black hole. Specifically, efficient operations acting on the radiation, those with quantum computational complexity
polynomial in the entropy of the remaining black hole, commute with a complete set of logical operators acting on the encoded interior, up to
corrections which are exponentially small in the entropy. Thus, under our pseudorandomness assumption, the black hole interior is well protected
from exterior observers as long as the remaining black hole is macroscopic. On the other hand, if the radiation is not pseudorandom, an exterior
observer may be able to create afirewall by applying a polynomial-time quantum computation to the radiation.
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The life of a black hole
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The Entanglement Structure of Hawking Radiation

The pair creation picture suggests a simple toy-model for Hawking
radiation:

1. We begin with a pure state |1)y representing the state of the black
hole on an initial time slice.

2. Hawking radiation is then induced from pair creation.

The schematic evolution of our state is given by

1
[Im = [)m @ 5(!0%& +[11)g.5,)- (1)

3. Continual time evolution repeatedly produce new correlated pairs,
with the state at step N being

1 N
W) = ﬁ @ 00) BB, T ‘11>Bk8k) (2)
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The Black Hole Firewall Problem

If we trace away the interior modes ék, then the exterior modes B, are
left in a maximally mixed state: the Hawking radiation is thermal.

If evaporation continues until the black hole has completely radiated
away, then we are left with a mixed thermal state, violating the unitarity

of quantum mechanics.
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The Black Hole Firewall Problem
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Consider some late outgoing mode By, and denote the collection of early
modes {Bx | k < K} as E. o

From the toy-model above, Bx must be (maximally) entangled with its
partner mode By in the interior:

S(BkBk) = 0. (3)

5
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The Black Hole Firewall Problem
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Consider some late outgoing mode By, and denote the collection of early
modes {Bx | k < K} as E.

From the toy-model above, Bx must be (maximally) entangled with its
partner mode By in the interior:

S(BkBk) = 0. (3)

If the final state of evaporation is to remain unitary, then Bx must purify
the early radiation:

S(BkE) < S(E). (4)
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The Black Hole Firewall Problem

We have the conditions:

S(ABC) + S(B) < S(AB) + S(BC), (5)
S(BxBk) =0, (6)
(7)

Collectively, these conditions are contradictory:

S(Bk) + S(E) = S(Bk) + S(EBxBx) (9)
< S(BkBk) + S(BKE) (10)
=0+ S(BKE) (11)
< S(E) (12)

This formulation of the black hole information problem is called the
firewall paradox.

6
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The Black Hole Firewall Problem

There are several proposed solutions of the firewall paradox, each with its
own merits and flaws. We will focus on the B C E proposal.

Problem: An outgoing mode B must be entangled with both an interior
mode B and the early radiation E. Violation of monogamy.

Solution: ldentify the two problematic subsystems. Embed the interior
partner mode B within the exterior radiation E.

Appears to cause just as many problems as it solves:

e |f the interior is actually embedded within the exterior, how can such
an embedding respect thelcausal structure of the black hole?

e How do we protect the interior from outside observers?

e How can such an embedding be realized in practice?
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Black Holes as Quantum Error-Correcting Codes

1. We postulate that black holes are efficient “scramblers” in a very
precise way, namely that the exterior Hawking radiation emitted by a
black hole is a computationally pseudorandom state.

2. Through the pseudorandomness hypothesis, we shaw that black
holes define a natural encoding of each interior mode into the
exterior Hawking radiation.

3. Such an encoding forms an error-correcting code which protects
against all operations with sufficiently small complexity.

A sufficiently powerful observer can detect violations of causality and
locality, but only provided that they are able to perform operations which
are of exponential complexity in the entropy of the remaining black hole.
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Pseudorandomness

A quantum state p is said to be computationally pseudorandom if for all
polynomial time algorithms A, we have

Pr[A(p) = 1] — Pr[A(c) = 1]| = error. (13)

Not clear if pseudorandom states even exists. Simple counting argument:
Too many states, not enough circuits.

Theorem [1208.0692): Let M = {I — M, M} be a POVM of
complexity less than n“. Then almost all n-qubit states of circuit
complexity O (n11k+9) will be indistinguishable from the maximally mixed

state with respect to M, with error 2~ /4.

A black hole state cannot be pseudorandom by virtue of being Haar
random; black hole formation is an efficient process. For pseudorandom
states to be useful to us, they must also be efficiently generated.

Assuming standard cryptographic primitives, it can be shown that there
exists efficiently computable pseudorandom quantum states [1711.00385].
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Limitations of Effective Field Theory

Hayden and Harlow [1301.4504] argued that any experiment witnessing
firewalls must be exponentially complex (in the entropy of the black
hole).

Exponentially complex operations are unphysical. A physically reasonable
effective field theory should come with restrictions not just to low
energies, but also low complexities.

Hawking radiation appears thermal to a computationally bounded

observer.

Let us explore the consequences for taking this modification seriously.

13
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Let |W) gy denote the state of the black hole and the exterior radiation.
Let oeg = Ieg/deg be the maximally mixed state of EB, and let

pes = Tru([V)(V]).

Definition: We say that the state |V)ggy is pseudorandom on the
radiation EB if there exists some constant v > 0 such that

Pr[M(peg) = 1] — PriM(oeg) = 1]| < 2~ *IHI. (14)

: L.
for any two-outcome measurement M with quantum complexity
polynomial in |H|, the entropy of the remaining black hole.

The pseudorandomness hypothesis can be seen as an axiomization of the

thermality of Hawking radiation for Harlow-Hayden type effective field

theories.

14
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Implications of Pseudorandomness

We show the following:

1.

There exists an encoding V' : Hgz — H gy of each interior mode B
into the Hilbert space of the exterior radiation.

: : L : :
. The encoding V defines a quantum error-correcting code, which we

call the black hole code.

. The black hole code protects against all operations performed by a

computationally bounded observer. Specifically, the code corrects
against all channels of sufficiently small complexity and Kraus rank.

Moreover, there exists a complete set of logical operators, the ghost
operators, which commutes with all correctable errors of the code.
The ghost operators serve as witness to the smoothness of the
horizon and the preservation of causality.

15)
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A Concrete Model

Imagine a scenario where an agent has access to a quantum device with
limited memory. The agent is able to program the device to perform one

of a long list of unitaries &«f = {Uj,---, Uy} to act on the early radiation
=
The net action of the agent can be modeled as a controlled unitary
N
Ui = 3" 18) (3lo ® (Us)e )
a=0 "
) E 0 E
Uy — U,

16
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A Concrete Model

Theorem: Let V : Hz — Hey denote the black hole code embedding.
Let & = {U,}"_; denote an arbitrary set of N = poly(|H|) unitaries
acting on the early radiation E, where each unitary has complexity
poly(|H|). Suppose that the pseudorandomness hypothesis holds.

Then there exists a complete set of logical operators £ C B(Hgy) for the
black hole code, such that for all T € £, and all U, € U, we have

ITV - VT| <4||TJ, (16)
I[Us, TV < 28 T, (17)

where T is the operator on B corresponding to T, and where

6~ N.27elHl/4, (18)

17

Pirsa: 20090016 Page 18/32



A Concrete Model

Theorem: Let V : Hpz — Hen denote the black hole code embedding.
Let &/ = {U,}"_; denote an arbitrary set of N = poly(|H|) unitaries
acting on the early radiation E, where each unitary has complexity
poly(|H|). Suppose that the pseudorandomness hypothesis holds.

Then there exists a complete set of logical operators £ C B(Hgy) for the
black hole code, such that for all T € £, and all U, € U, we have

ITV - VT| <4||TJ, ® (16)
I[Ua, TIV|| < 28| T, (17)

where T is the operator on B corresponding to T, and where

6~ N.27elHl/4, (18)

The black hole interior is protected from any action that an external
agent can perform, so long as the actions are computationally limited.

17
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The Decoupling Bound

The pseudorandomness hypothesis immediately allows us to prove a key
decoupling bound.

Theorem (Decoupling Bound): Let ppoegy denote any state obtained
from wo ® |W)Eegy by acting with some polynomial-size circuit Ug. Then

lpos — po ® pillr < 627 (1HI=I0D, (19)
0 (Trg) (‘) a5
|
g B
0, T@N -
CL‘)0 \I’/ (Jo @ E
Ip Ip
dE®dB
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The Black Hole Encoding

The decoupling bound allows us to define a natural code subspace
associated with the black hole. Letting |W)ggy denote the state of the
black hole and radiation, we define an operator Viy : Hg — Heny by

Vulidg =2 (Ien ® (wlgg) (IV)ens ® 11)5) - (20)

E H '3
|

[l
€ —

One can use the decoupling bound to show that Vi is e-close to an

isometric embedding, where € = 2 - 2= 4|,

The code subspace defined by Viy will be called the black hole encoding,
which defines the desired embedding of the partnered interior modes B

into the exterior radiation (more precisely, into EH). 19
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The Information-Disturbance Tradeoff

Having identified a suitable codespace, we now characterize its

error-correcting capabilities.

The information-disturbance relation says that a code can protect
quantum information from noise if and only if the “environment” of the
noise channel £ learns nothing about the logical information.

Specifically, there is a physical process R, the recovery process, which

reverses some error &:
W

Ro&~TI, (21)

if and only if the reference system that purifies the quantum
error-correcting code decouples from the environment of £.

20
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The Information-Disturbance Tradeoff

Diagrammatically, the information-disturbance relation can be depicted
as:

F [&] R

R
~ < i ~
£ Ue
p p p PF PR

21
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The Black Hole Error-Correcting Code

Compare the information-disturbance tradeoff to the decoupling

condition:

O |Tvg| (Try] B

Q

PBB PO PB

This shows that the black hole code corrects against all channels of
polynomial complexity in |H| which have sufficiently low-rank.

Theorem: Let £ be an error channel on E with purification Ug. Suppose
that the decoupling bound holds. Then & is e-correctable for Vi, where

3
= \/; .o—(a|H|=[0])/2 (22)
20

Pirsa: 20090016 Page 24/32




Ghost Logical Operators

We can recast the error-correcting conditions of the black hole code into
an algebraic form.

Let 7z be an operator which acts on the interior mode B. By
microcausality, any operator O that an exterior agent can apply onto the
early radiation should commute with T3, i.e.,

(@) (23)

The corresponding logical operator Tgy on the code subspace should
satisfy the same relation when restricted to the code subspace:

@ (O, Ten]|V)esn = 0. (24)

We will call operators which satisfy such a relation ghost logical
operators.

23
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Ghost Logical Operators

Theorem: Let Tg be any operator acting on an outgoing mode B. Then
there exists a corresponding logical operator Tgy such that

TelV)esn ~ Ten|V)esn, (25)
[Ea, Ten]|V)eBHn ~ 0, (26)

where {E,} is some set of operators that a computationally bounded
external observer can apply on the radiation (such that the decoupI)Iing

bound holds).

The first relation serves as a witness to the entanglement between the
outgoing mode and the encoded interior mode, as required for the
existence of a smooth horizon.

The second relation serves as a witness to microcausality between the
encoded interior and an external observer, as required to maintain the
correct causal structure.

24
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Conclusion

We find that the B C E proposal for the firewall problem can be
given reasonable meaning within the context of quantum
information theory and quantum complexity.

Under a reasonable pseudorandomness hypothesis, black holes form
natural error-correcting codes protecting against low-complexity
operations.

Error-correcting properties of black holes lead to the existence of
ghost operators, which certify the preservation of geometry and
causality.

Operations with large complexity or high rank can see violations of
causality and create firewalls. Effective field theory should be
restricted to low complexity, not simply low energy.

25
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Addendum 1 - Efficient Pseudorandomness

Specifically, under the assumption that there exists a family of
quantum-secure pseudorandom functions {PRF }cck, we may efficiently
prepare states which are computationally pseudorandom.

Consider the family of states defined by

PRFy ()
Pk) = \/‘7 P [x)

xeX

These states are efficiently computable via a Fourier transform, since the
family of pseudorandom functions {PRF }.ck is efficiently computable.

Then it can be shown that sampling from {|¢x) }kek is computationally
indistinguishable from the maximally mixed state [1711.00385]:

{|ow) bker ~ {|f)}rexx ~ Haar. (27)

28
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Addendum 2 - Ghost Operators - Proof Sketch

Let # be an abstract logical Hilbert space, and consider an encoding
V:H — C CH. Let € be a correctable error channel for C, with Kraus

representation given by

K]
E(p) =Y EapE]. (28)

where we denote the set of Kraus operators as K = {E, }.

Let
L

7 =S ARk (29)

be a normal operator on 7, with eigenvalues {\s}, and eigenbasis {|k)}.

A natural first attempt at defining ghost logical operators might proceed
as follows....

29
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Ghost Operators - Proof Sketch

Let |k) = V/|k) be the encoded eigenbasis. Consider the subspaces
S« = span{E,lk) [a=1,--- [K][}. (30)

By the Knill-Laflamme conditions, the spaces S, are mutually orthogonal
for distinct k. Let P, denote the projection onto S,. Define the operator

= - (i)
k

Then these operators T satisfy
TEL) =Y MPeEllj) = NiElj) = ET1j), (32)
k

where T is any logical operator for T. In particular, if T itself is a logical
operator for T, then it would satisfy

[Es, TIV =0 (33)
for all E; € K.

30
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Ghost Operators - Proof Sketch

We seek conditions where T, possibly after a suitable extension, becomes
a logical operator T.

Theorem: An operator T constructed as before can be extended to be a
ghost logical operator for T if and only if

(i|Eslj) =0, (34)
for all E; € K and all i,j where A\; # A;.

Proof Sketch: This condition ensures that the code subspace is in the
orthogonal complement of the subspaces S, defined before. We can
therefore extend the action of T onto the code subspace.

Conversely, if T extends to a ghost logical operator, say T’, then we
must have T'|j) = \;|j). Left multiplying by (i|E], we get

NUIETT ) = GIEIT') = (I T'ESL) = NiGlETL)). (35)
If A\i # Aj, then we must have (i|E;|j) = 0.

31
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Complete Set of Ghost Operators

We see that the existence of ghost logical operators has to do not with
just the correctability of the errors in K, but rather the correctability of
KuU{l}.

A succinct way to relate the ghost operators to the correctability of the
code subspace is to require a complete set of ghost logical operators, i.e.,
to require the existence of a ghost logical operator corresponding to any
operator on .

Theorem: Let £ = £/2 + Z/2. Then there exists a complete set of
ghost logical operators for £ if and only if £7 is a correctable channel.

Proof Sketch: If £7 is correctable, then the Knill-Laflamme conditions
for £ means that equation (34) is automatically satisfied for any choice

of T.

32
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