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Abstract: Abstract: Large& nbsp;N&nbsp;matrix quantum mechanics are central to holographic duality but not solvable in the& nbsp;most
interesting cases. We show that the spectrum and simple expectation values in these& nbsp;theories can be obtained numerically via a "bootstrap'
methodology. In this approach,&nbsp;operator expectation values are related by symmetries -- such as time translation
and& nbsp; SU(N)& nbsp;gauge invariance -- and then bounded with certain positivity constraints. We first& nbsp;demonstrate how this method
efficiently solves the conventional quantum anharmonic& nbsp;oscillator. We then reproduce the known solution of large& nbsp;N single matrix
guantume& nbsp;mechanics. Finally, we present new results on the ground state of large& nbsp;N& nbsp;two matrix& nbsp;quantum mechanics.
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Motivation

+ Why matrix quantum mechanics?
+ Emergence of spacetime

* Quantum mechanical
- Wide range of models

- What do we learn?

- Holography and string theory
+ Black hole dynamics

- But generally difficult!

+ Solvable for one matrix

* No geometric locality built in

+ Gauge theory with fermions '

+ Single particle = Single / Two matrices =?
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Single particle example

How to solve the following Hamiltonian?
H=p* + +gx*
Bootstrap! From symmetries I know that
((H,Q]) =0, YO,
in any energy eigenstate or thermai state.

Ex 1: Take O = x2:
(xp) + (px) =0,

(xp) — (px) =1, = (xp) = —(px) =1i/2.
Fix 2: Take O = xp (Virial theorem):

(—2p* + 227 + 4gx*) = 0.
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Single particle example

More systematically,

* Any expectation value (x"p°) can be reduced to functions of (x™)
or (x"p).
« Take O = x",

([H,0]) = ([p* ) =0

(r)xr—l o xpxr—Z e xr—1p> —
(x"p) can be reduced to (x™) too!

- There is a recurrence relation on (x™).

Overall, knowledge of (x?) and E = (H) (or equivalently (x*)) yields

values for all operators. '
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Single particle example

How to bound (x?) and E = (H) then?
Positivity requirement:

(0t0) >0, VO.

If we choose O = )_ c;0;,
) OJr >0, Ve

that is, the matrix M;; = (O] O; ) must be positive semidefinite.
Ex:
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Single particle example

1.42

+ Shrinking islands corresponding to the spectrum

- Higher energies need more constraints
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Single particle example

0.806

0.802

460 462 464 466 468 470
E

- Shrinking islands corresponding to the spectrum

- Higher energies need more constraints
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Single matrix example

- What is the matrix model?

H = tr(P° + X> + g2X%)

Here X and P are N-by-N hermitian matrices with commutator
[Pij, X1] = bk

+ Where is the emergent geometry?

A — /dXe XX = /dx-;A(xi)e (g +)

— / dxie— E(x12+x’.4\+[é#} log |x,-—x},-|

The Jacobian A(x;) = JT;<j(xi — xj)z. Large N is a large number
of eigenvalue “particles” with repulsive interaction in an external
potential.
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Single matrix example

The goal is to bound possible values of observable expectations:

(tr X), (tr XP), (tr XXXX) ...

There are some linear relations between them due to symmetries:

CIE O = O (R G @ =)
Virial theorem:

- H=trP2 + tr X2 + tr X*
- O = tr XP

(—2trP? +2r X% + 4tr X*) = 0

Odd polynomials vanish due to a Z, symmetry.
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Single matrix example

Cyclicity of the trace and large N further impose some/ quadratic

equalities:

tr PX° — r X°P = —i(eltr X2 Ktr X tr X tr X2 tr 1),

(tr PX°®) — (r X°P) = —2iN{tr X*) — i{tr X) (ir X).
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Single matrix example

Cyclicity of the trace and large N further impose some quadratic

equalities:

trPX° — & X°P = —i(eItr X2 + r X tr X + tr X2 tr I),

(tr PX®) — (r X°P) = —2iN{tr X*) — i{tr X) (ir X).

It is also possible to not factorize and bootstrap for finite N.
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Single matrix example

Positivity requirement:
(trOo'0) >0, VO.
If we choose O =} c;O;,

Y cfei{trOfO;) 20, Ve,
1]

that is, the matrix M;; = (tr O;rOj) must be positive semidefinite.
Example:
I X X
(trl)  (tr X?) 0
(s e 0 0
0 0 (tr X2) {(tr XP)
0 0 (tr PX) (tr P?)

B
0
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Single matrix example

H=trP*+trX*> 4+ gN ltrx*
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Single matrix example

H=trP2+trX*>+gN ttrX*
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Two matrices

H=tr (P§< + P2+ m? (X2 +Y?) — &2[X, Y]Z)

The L = 4 energy fits well to the scaling
Eo/N? ~ 1.40 (Ng?)/3 + 1.01m? / (Ng*)'/3,
and the leading order coefficient agrees with MC result.

3.4F
3.2:
3.05—
2.8f
2.6]
2.4+
2.2}
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Bootstrap Recipe

. Find a subset of operators of which expectation values are
interesting (tr X2, tr X*,...)

. List all the equations between them from first principles (or

something else that we know), for example from symmetries
. Also add the semidefinite constraints (OTO) /> 0

. Minimize (H) subject to the constraints in 2 and 3, if you want

to know about ground states

. That gives you a lower bound on ground state energy! If an
upper bound is also know, minimize /maximize observables within

this energy range and bounds on other observables are obtained.
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Hubbard model in 2d

n=1

U=2

U=4

U=6

U=28

Epp k=7
Eip|k=co
EpMET
EpMmRra

— il

—1.1764(3)
~1.176(1)

=U.913

—0.8604(3)
—0.8605(5)

—0.705
—0.66(2)
—0.6562(5)
—0.6565(1)

—0.565
—0.54(2)
—0.5234(10)
—0.5241(1)

n = 0.875

U=2

U=+4

=6

U=38

Eib|x=7
B | oo
EpMET

—lsils

—1.2721(6)

=1163

~1.031(3)

—0.963
—0.86(5)
—0.863(13)

—0.867
—0.77(3)
—0.749(7)

Table 2: Bootstrap lower bounds Ej, of two-dimensional Hubbard model
ground state energies (per site) Eg, at fillings n = 1 and n = 0.875.
Solutions from DMET and DMRG are shown for comparison.
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Bounds on observables

A rigorous bound on ground state observable O is also possible by

minimizing / maximizing (O) while imposing previous constraints

along with

<H> < Eub'

An upper bound E,, on ground state energy can be from, for

example, a variational method. .

n=1 | U=2 U=4 U=6 U=8
dp|k—7 | | 0.160 0.106 0.071 0.049
du k7 | [L0.224 0.169 0.117 0.079
dpyveT | 0.1913(4) | 0.1261(1) | 0.08095(4) | 0.05398(7)
doyvre | 0.188(1) | 0.126(1) | 0.0809(3) | 0.0539(1)

Table 3: Bootstrap bounds of ground state double occupancy (per site)
D = ny4ny |, for the two-dimensional Hubbard model at half filling.
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Bounds on observables

These bounds are tight in the limit of an infinite number of

constraints. 1

Formally we were looking for a linear functional of operators. Any

linear functional can be written as tr MO for some operator M.
Constraints tr MO" = (tr MO)* restrict M to be hermitian, and

tr OTO > 0 require M to be positive. Similarly tr MI = 1 requires that
M traces to one.

So if we impose these constraints for all operators O, and then
minimize tr MH, the minimal value (only a lower bound if only some

O are considered) will be the true ground state energy.
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Conclusion

+ Lower bound on ground state energy can be obtained from
symmetry, positivity and locality constraints.

+ The bound is systematically improved by considering more
operators and converges to the exact value.

 The lower bound is complementary to the variational upper

bound and provides rigorous bounds on other observables.

g
+ Geometric symmetries and supersymmetry should be powerful in

bootstrapping realistic multi-matrix models.
 Other applications?
- Thank you!
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