Title: Protected spin characters, link invariants, and q-nonabelianization
Speakers: Fei Yan
Series: Mathematical Physics
Date: September 17, 2020-1:30 PM
URL: http://pirsa.org/20090012
Abstract: In this talk I will describe a new link "invariant" (with certain wall-crossing properties) for links L in a three-manifold M , where M takes the form of a surface times the real line. This link "invariant" is constructed via a map, called the q-nonabelianization map, from the $\mathrm{gl}(\mathrm{N})$ skein algebra of M to the $\mathrm{gl}(1)$ skein algebra of a covering three-manifold M^{\prime}. In the special case of $\mathrm{M}^{\prime} \mathrm{R}^{\wedge} \wedge$, this map computes well-known link invariants in a new way. As a physical application, the q-nonabelianization map computes protected spin character counting BPS ground states with spin for line defects in $4 \mathrm{~d} \mathrm{~N}=2$ theories of class-S. I will also mention possible extension to more general three-manifolds, as well as further physical applications to class-S theories. This talk is based on joint work with Andrew Neitzke, and ongoing work with Gregory Moore and Andrew Neitzke.

Protected spin characters, link invariants, and q-nonabelianization

Fei Yan

Rutgers University

Mathematical Physics Seminar
Perimeter Institute

September 17th, 2020

Outlook

I will describe the construction of a new link "invariant" (with wall-crossing

Outlook

I will describe the construction of a new link "invariant" (with wall-crossing behaviors) for links L in a three-manifold $M(M=$ surface $\times \mathbb{R})$.

- This construction computes protected spin characters counting BPS ground states with spin for line defects in $4 \mathrm{~d} N=2$ theories of class S.
- When $M=\mathbb{R}^{3}$, this construction computes well-known link invariants in a new way.

- q-nonabelianization for line defects arXiv:2002.08382 To appear in JHEP
- 20XX.XXXXX 21XX.XXXXX

Fei Yan (Rutgers University)

Outlook

I will also describe further possible connections to exact WKB analysis in $4 \mathrm{~d} N=2$ theories.

Line defects in $4 \mathrm{~d} N=2$ theories

Consider 4d $N=2$ supersymmetric field theory, with the insertion of a supersymmetric line defect extending along time direction, sitting at the origin of spacial \mathbb{R}^{3}. (susy Wilson-'t Hooft lines and generalizations) [Kapustin],[Kapustin-Saulina], [Drukker-Morrison-Okuda], [Drukker-Gaiotto-Gomis], [Drukker-Gomis-Okuda-Teschner],[Gaiotto-Moore-Neitzke],[Córdova-Neitzke], [Aharony-Seiberg-Tachikawa],[Moore-Royston-van den Bleeken],

Going to a point in the Coulomb branch, the bulk has IR effective description in terms of $U(1)^{r}$ gauge theory.
Question: What does a supersymmetric line defect look like in the IR?
A superposition of supersymmetric line defects in the abelian theory, with coefficients in this superposition given by framed protected spin characters. [Gaiotto-Moore-Neitzke]

Framed protected spin characters and the UV-IR map

The framed protected spin character (PSC) is a supersymmetric index counting the supersymmetric ground states of the bulk-defect system, with IR electromagnetic (and flavor) charge γ.

$$
\overline{\bar{\Omega}}(\mathbb{L}, \gamma):=\operatorname{Tr}_{\mathcal{H}_{L}, \gamma}(-q)^{2 J_{3}} q^{2 / 3} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

$J_{3}: S U(2)_{P}$ spacial rotation, $\quad I_{3}: S U(2)_{R}$ R-symmetry. The UV-IR map for line defects:

$$
\mathbb{L} \leadsto F(\mathbb{L}):=\sum_{\gamma} \underline{\bar{\Omega}}(\mathbb{L}, \gamma) X_{\mathbb{E}}
$$

X_{γ} represent IR Wilson-'t Hooft lines with charge γ.

Framed protected spin characters and the UV-IR map

Example: [Gaiotto-Moore-Neitzke],[Córdova-Neitzke] $N=2$ pure $S U(2) S Y M$ at a point in the weak-coupling region of its Coulomb branch, denote IR charge as $\left(\gamma_{e}, \gamma_{m}\right)$.

- Wilson line $\mathbb{L}_{\underline{2}}$ in the fundamental representation:

$$
F\left(\mathbb{L}_{\underline{2}}\right)=X_{(1,0)}+X_{(-1,0)}+X_{(0,1)}
$$

- Wilson line $\mathbb{L}_{\underline{3}}$ in the adjoint representation:

$$
\begin{aligned}
F\left(\mathbb{L}_{\underline{3}}\right)= & X_{(2,0)}+X_{(0,0)}+X_{(-2,0)}+X_{(0,2)} \\
& +\left(-q-q^{-1}\right) X_{(-1,1)}+\left(-q-q^{-1}\right) X_{(1,1)}
\end{aligned}
$$

How could one compute PSC?

There has been extensive work on computation of PSC:

- For Lagrangian theories: supersymmetric localization, semiclassical computation
- For theories of quiver type: quiver quantum mechanics
- For theories of class S : spectral networks
- ... I
[Gaiotto-Moore-Neitzke],[Córdova-Neitzke],[Moore-Royston-van den Bleeken] [Coman-Gabella-Teschner],[Ito-Okuda-Taki],[Gabella],[Galakhov-Longhi-Moore],. I

How could one compute PSC?

There has been extensive work on computation of PSC:

- For Lagrangian theories: supersymmetric localization, semiclassical computation
- For theories of quiver type: quiver quantum mechanics
- For theories of class S : spectral networks
- ... I
[Gaiotto-Moore-Neitzke],[Córdova-Neitzke],[Moore-Royston-van den Bleeken] [Coman-Gabella-Teschner],[Ito-Okuda-Taki],[Gabella],[Galakhov-Longhi-Moore],.

Today, I will describe a geometrical way to compute PSC for line defects in theories of class S.

Line defects in class S theories

Consider 6d $(2,0)$ theory of type $\mathfrak{g l}(N)$ on $C \times \mathbb{R}^{3,1}$ (C : Riemann surface) with certain twisting, compactify on $C \leadsto 4 \mathrm{~d} N=2$ theory of class S. Supersymmetric surface defect in 6d wrapping $\ell \times \mathbb{R}^{0,1} \subset C \times \mathbb{R}^{3,1}$
$m 1 / 2-B P S$ supersymmetric line defect in 4 d . [Gaiotto-Moore-Neitzke]
(We only use 6d surface defects in fundamental representation of $\mathfrak{g l}(N)$.)
A point in the Coulomb branch corresponds to a N-fold branched covering $\widetilde{C} \rightarrow C$, where $\widetilde{C} \subset T^{*} C$ is the Seiberg-Witten curve. In the \mathbb{R} the bulk is approximated by $6 \mathrm{~d}(2,0)$ theory of type $\mathfrak{g l}(1)$ on $\tilde{C} \times \mathbb{R}^{3,1}$. IR line defects come from 6 d surface defects wrapping $\tilde{\ell} \times \mathbb{R}^{0,1} \subset \tilde{C} \times \mathbb{R}^{3,1}$.
In the $q \rightarrow 1$ limit, the UV-IR map is roughly a map taking $\ell \subset C$ to $\tilde{\ell} \subset \tilde{C}$. [Gaiotto-Moore-Neitzke] I
What about the case for a generic q ?

Line defects OPE and skein algebras

When q is generic, supersymmetric line defects have to sit along a fixed axis in $\mathbb{R}^{3} \rightsquigarrow$ non-commutative associative OPE * [Gaiotto-Moore-Neitzele], rag]]. In the UV, the OPE is in general complicated.
In the IR, the OPE is given by quantum torus:

$$
X_{\gamma_{1}} * X_{\gamma_{2}}=(-q)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle} X_{\gamma_{1}+\gamma_{2}}
$$

\langle,$\rangle is the Dirac-Schwinger-Zwanziger pairing.$
In class-S theories, line defects OPE are described via skein algebras.
[Alday-Gaiotto-Gukov-Tachikawa-Verlinde], [Gaiotto-Moore-Neitzke],[Witten]
[Drukker-Gomis-Okuda-Teschner],[Tachikawa-Watanabe],[Coman-Gabella-Teschner],
Hint: the UV-IR map is a map between the UV and IR skein algebras.

A new kind of line defects in class- S theories

Consider an oriented link $L \subset M=C \times \mathbb{R}_{h}$, we put a supersymmetric surface defect in the $6 \mathrm{~d}(2,0) \mathfrak{g l}(N)$ theory on

$$
L \times \mathbb{R}^{0,1} \subset M \times \mathbb{R}^{2,1}
$$

[Witten],[Gaiotto-Witten],[Ooguri-Vafa],[Gukov-Schwarz-Vafa],[Dimofte-Gaiotto-Gukou], [Chun-Gukov-Roggenkamp],[Gukov-Putrov-Vafa],[Gukov-Peei-Putrov-Vafa], ...
In the $I \mathbb{R}$ the finite extent of L in the \mathbb{R}_{h}-direction is suppressed, it looks like a line defect in the 4 d class- S theory, which is $1 / 4$-BPS and only preserves $U(1)_{P}$ rotation symmetry and $U(1)_{R}$ R-symmetry. We could still define PSC to count its BPS ground states.
If L is isotopic to a simple closed curve on C at a fixed \mathbb{R}_{h}-coordinate, then the line defect is $1 / 2$-BPS and preserves the full rotation symmetry.

The UV skein algebra

The space of such line defects equipped with OPE is described by the $\mathfrak{g l}(N)$ HOMFLY skein algebra of $M=C \times \mathbb{R}_{h}$, defined as the space of formal $\mathbb{Z}\left[q^{ \pm 1}\right]$-linear combinations of framed oriented links (up to isotopy) in M, modulo the following relations:

The multiplication is defined by "stacking" links along the \mathbb{R}_{h}-direction.

The IR skein algebra

The \mathbb{R} line defects correspond to framed oriented links $\tilde{L} \subset \tilde{M}=\tilde{C} \times \mathbb{R}$. The OPE algebra is (twisted) $\mathfrak{g l}(1)$ skein algebra of \tilde{M}, defined as the space of formal $\mathbb{Z}\left[q^{ \pm 1}\right]$-linear combinations of framed oriented links (up to isotopy) in \widetilde{M}, modulo the following relations:

ま

This skein algebra is indeed isomorphic to the quantum torus.
Given a charge $\gamma \in H_{1}(\widetilde{C}, \mathbb{Z}), X_{\gamma}$ corresponds to the class of certain loop on \widetilde{C} in class γ. The DSZ pairing corresponds to the intersection pairing in $H_{1}(\widetilde{C}, \mathbb{Z})$.

The UV-IR map

To compute framed protected spin characters, or equivalently to construct the UV-IR map for line defects, we need a map F from the UV skein algebra to the IR skein algebra, sending links $L \subset M$ to links $L \subset \mathcal{M}$:

$$
F(L)=\sum_{\tilde{L}} \alpha(\tilde{L}) \tilde{L}, \quad \alpha(\widetilde{L}) \in \mathbb{Z}\left[q^{ \pm 1}\right] .
$$

The map F has to respect line defects OPE, i.e. it has to be a homomorphism from the $\mathfrak{g l}(N)$ HOMFLY skein algebra of M to the (twisted) $\mathfrak{g l}(1)$ skein algebra of \widetilde{M}.
F could be viewed as quantization of the classical non-abelianization map.
[Gaiotto-Moore-Neitzke],[Hollands-Neitzke], .. I

Construction of the UV-IR map

With Andrew Neitzke, we constructed the UV-IR map F completely for $N=2$, almost for $N=3$, many pieces working for $N>3$.

What's our basic strategy?

- Compactifying the time direction and introducing a twist by $(-q)^{23_{3}} q^{2 / 3}$, the reduced theory is effectively a twisted and Ω-deformed $5 \mathrm{~d} N=2 U(N)$ SYM on $M \times \mathbb{R}_{\epsilon}^{2}$, with insertion of fundamental Wilson line along the link $L \subset M^{\ddagger}$
- The theory is put in a background which generically breaks $U(N) \rightarrow U(1)^{N}$, determined by the covering $\tilde{M} \rightarrow M$.
- Theoretically $F(L)$ could be obtained by computing the partition function of the $5 \mathrm{~d} N=2 U(N)$ SYM in the above background, and then expanding it in terms of partition function of the IR effective theory, with IR Wilson lines insertions.

Construction of the UV-IR map

We did not carry out our construction in such localization paradigm.
Rather, we combine the above physical picture with certain bootstrap methods.

Concretely, our construction of the UV-IR map:

$$
F(L)=\sum_{\tilde{L}} \alpha(\tilde{L}) \tilde{L}, \quad \alpha(\tilde{L}) \in \mathbb{Z}\left[\mathfrak{q}^{ \pm 1}\right] .
$$

consists of two steps:

- Step 1: Enumerate all possible $\tilde{L} \subset \tilde{M}$ consisting of local pieces.
- Step 2: To each \tilde{L} we assign a factor $\alpha(\tilde{L}) \in \mathbb{Z}\left[q^{ \pm 1}\right]$.

Construction of the UV-IR map: Step 1

To enumerate $\tilde{L} \subset \tilde{M}$, we assemble local pieces of the following two kinds:

- Locally away from branch points of $\tilde{M} \rightarrow M, U(N)$ is broken into $U(1)^{N}$. The fundamental representation of $U(N)$ is decomposed into its N weight spaces, corresponding to the N sheets of \tilde{M}.
The fundamental Wilson line in the $U(N)$ theory decomposes locally into N Wilson lines of the $U(1)^{N}$ theory:

The local strand of $L \subset M$ is mapped to its N preimages under the covering $\widetilde{M} \rightarrow M$.

Construction of the UV-IR map: Step 1

- The second type of local piece represents trajectories from massive W-bosons. W-bosons are labeled by two sheets i, j of \tilde{M}. The BPS condition determines that, W-bosons must travel along the so-called BPS ij-trajectories [Gaiotto-Moore-Neitzke].
For $N=2, W$-bosons could travel to/from branch locus of $\tilde{M} \rightarrow M$. They could also be exchanged between different strands of L.

For $N>2$, W-bosons could travel along complicated web trajectories.

Construction of the UV-IR map: Step 2

Each \tilde{L} carries a weight factor $\alpha(\tilde{L}) \in \mathbb{Z}\left[q^{ \pm 1}\right]$, which also consists of various local contributions. We determined these weight factors by bootstrap, with the constraint that UV-IR map F is a homomorphism from the UV skein algebra to the IR skein algebra.

For example, web trajectories of W-bosons contribute a weight factor of $\pm\left(q-q^{-1}\right)^{m}$, which vanishes as $q \rightarrow 1$.

In practice, this could be determined in a reductive way using isotopy invariance constraints.

Intermediate Summary

We constructed UV-IR map F computing protected spin characters for a new kind of line defects in class- S theories. F is a map from the UV skein algebra to the \mathbb{R} skein algebra. Concretely it maps links $L \subset M=C \times \mathbb{R}$ to formal combinations of links $\tilde{L} \subset \widetilde{M}=\widetilde{C} \times \mathbb{R}$:

$$
F(L)=\sum_{\tilde{L}} \alpha(\tilde{L}) \widetilde{L}, \quad \alpha(\widetilde{L}) \in \mathbb{Z}\left[q^{ \pm 1}\right] .
$$

- When $M=\mathbb{R}^{3}, F(L)$ computes a familiar link invariant:

$$
F(L)=q^{N w(L)} P_{\text {HOMFLY }}\left(L_{a} a=q^{N}, z=q-q^{-1}\right),
$$

where $w(L)$ is the self-linking number of L.
For $N=2$, our construction reproduces the vertex model for Jones polynomials, interpreted in physics language by Witten and Gaiotto-Witten.

Intermediate Summary

- In certain cases, the UV-IR map has been obtained using a different method.
For $M=C \times \mathbb{R}$ and $N=2$, Bonahon-Wong constructed quantum trace map.
For $M=C \times \mathbb{R}$ and at special loci in the Coulomb branch where the BPS ij-trajectories are nearly collinear, Gabella computed PSC using spectral network with additional R-matrix factors.

I

Wall-Crossing behavior

The UV-IR map F depends on the covering $\tilde{M} \rightarrow M$. As we move on the Coulomb branch, F could change discontinuously. This is called (framed) wall-crossing. The wall-crossing behavior of F is controlled by the BPS spectrum of the bulk 4d theory.
[Kontsevich-Soibelman], [Gaiotto-Moore-Neitzke], [Dimofte-Gukov],...
For example, across a wall corres. to a BPS hypermultiplet with charge γ :

$$
F(L) \rightarrow E_{q}\left(X_{\gamma}\right) F(L) E_{q}\left(X_{\gamma}\right)^{-1}
$$

where $E_{q}(x)$ is the quantum dilogarithm. I
For $N=2$, we have checked our map F has the expected wall-crossing behavior.

A simple example in $M=\mathbb{R}^{3}(N=2)$

We take $M=\mathbb{R}^{3}$ and $\tilde{M}=\mathbb{R}^{3} \cup \mathbb{R}^{3}$. The BPS 12-trajectories are straight
lines in (say) x^{1}-direction. We take L to be an unknot.

There are three lifts of L :

Their contributions sum up to

$$
F(L)=q^{-1}+q^{-1}+\left(q-q^{-1}\right)=q+q^{-1}
$$

Another example in $M=\mathbb{R}^{3}(N=3)$

We take $M=\mathbb{R}^{3}$, and $\tilde{M}=\mathbb{R}^{3} \cup \mathbb{R}^{3} \cup \mathbb{R}^{3}$. There are now three different
kinds of BPS trajectories, as straight lines along three different directions. We take L to be a trefoil. There are in total 51 lifts of L.

PSC computation in $S U(2)$ with $N_{f}=4$
We take $N=2$ and $M=C \times \mathbb{R}$, where C is a four-punctured sphere. This corresponds to the $S U(2)$ gauge theory with four fundamental hypers. We go to a point in the moduli space where the Seiberg-Witten curve is given by

$$
\widetilde{C}=\left\{\lambda: \lambda^{2}+\phi_{2}=0\right\} \subset T^{*} C, \quad \phi_{2}=-\frac{z^{4}+2 z^{2}-1}{2\left(z^{4}-1\right)^{2}} d z^{2}
$$

PSC computation in $S U(2)$ with $N_{f}=4$
We consider two $1 / 2-B P S$ line defects:

- L_{1} corresponds to a fundamental Wilson line in certain duality frame, $F\left(L_{1}\right)$ is an expansion in $7 X_{\gamma}$'s with coefficients 1 .
[Gaidtto-Moore-Neitzke]
- L_{2} has BPS states with non-trivial spin:

$$
F\left(L_{2}\right) \supset\left(1+\left(1+q^{2}+q^{-2}\right)\right) X_{\gamma}
$$

PSC computation in $S U(2)$ with $N_{f}=4$
Fei Yan

PSC computation in $S U(2)$ with $N_{f}=4$

Here is an example of a $1 / 4-B P S$ line defect:

$F(L)$ is an expansion in terms of X_{γ} with 31 different charges.

General three-manifold M

We have taken $M=C \times \mathbb{R}$. What about more general three-manifold M ? Reducing the 6 d theory (with surface defect) on M gives a $3 \mathrm{~d} N=2$ theory with line defect insertion. One could also make a perturbation, labeled by $\widetilde{M} \rightarrow M$, under which the bulk theory flows to a Lagrangian theory in the IR. [Dimofte-Gaiotto-Gukov], [Cecotti-Cordova-Vafa],[Dimofte-Gaiotto-van der Veen],...
Question: how does a UV line defect decompose in terms of IR line defects?

Here the UV-IR map should go from the $\mathfrak{g l}(N)$ skein module of M to the (twisted) $\mathfrak{g l}(1)$ skein module of \widetilde{M}.

General three-manifold M

For $N=2$, our construction could been formulated in a covariant way. (For $N>2$ it also seems possible.)
We expect most of our construction to apply to more general 3-manifolds M that admit ideal triangulations, with certain new ingredients.
In particular, \tilde{M} has an new kind of singularity, one in each tetrahedron of the triangulation.
[Freed-Neitzke],[Cecotti-Córdova-Vafa],[Dimofte-Gaiotto-van der Veen]
We need extra skein relations in the (twisted) $\mathfrak{g l}(1)$ skein module of \tilde{M} :

Interlude

- In our construction of the UV-IR map to compute framed protected spin characters, we have effectively turned on half Ω-background along a spacial $\mathbb{R}_{\epsilon}^{2}$-plane.

Interlude

- In our construction of the UV-IR map to compute framed protected spin characters, we have effectively turned on half Ω-background along a spacial $\mathbb{R}_{\epsilon}^{2}$-plane.
- On the other hand, there has been recent developments in exact WKB analysis and non-perturbative approaches to the quantization of Seiberg-Witten curves in $4 \mathrm{~d} N=2$ theories. In that context, one also turns on half Ω-background.
- It is tempting to ask whether one could combine the above two stories by turning on the full Ω-background.

Exact WKB and 4d $N=2$ gauge theories

Recently there are many interesting discoveries on relations between quantum mechanical systems and supersymmetric gauge theories.
[Dorey-Tateo], [Nekrasov-Shatashvili], [Nekrasov-Rosly-Shatashvili],[Gaiotto-Moore-Neitzke], [Alday-Gaiotto-Tachikawa],
[Gaiotto],[Grassi-Hatsuda-Marino], [Neitzke-Hollands], [Jeong-Nekrasov], [Grassi-Marino], [Grassi-Gu-Marino], [Gaiotto-Lee-Wu]
The center piece is the Schrödinger equation (and its higher analogue):

$$
\left[\hbar^{2} \partial_{z}^{2}+P(z)\right] \psi(z)=0
$$

- Exact WKB methods to study the monodromy data [Voros),[Kawai-Takee].

- Spectral problems in quantum mechanics
- Quantization of Seiberg-Witten curve in $4 \mathrm{~d} N=2$ gauge theories Deformation of chiral ring for surface defects in half- Ω background

The Voros symbol $\mathcal{X}_{\gamma}(\hbar)$

In abelianization language, the Voros symbol is:

$$
\mathcal{X}_{\gamma}(\hbar)=\operatorname{Hol}_{\gamma} \nabla^{\mathrm{ab}}(\hbar), \quad \gamma \in \mathrm{H}_{1}(\Sigma, \mathbb{Z}) .
$$

It could be obtained via different methods:

- Borel resummation of the exponentiated WKB periods.
- Ratios of Wronskians of certain distinguished local solutions to the Schrödinger equation: asymptotically decaying solutions as z goes into a singularity; or eigenvectors of the monodromy around a loop.
- Computable by instanton calculous in $4 \mathrm{~d} N=2$ gauge theories.
- Computable by certain TBA-like integral equations.

Integral equation for $\mathcal{X}_{\gamma}(\hbar)$

The Voros symbol $\mathcal{X}_{\gamma}(\hbar)$ obey the following TBA-like integral equation: [Gaiotto], [Gaiotto-Moore-Neitzke]
$\mathcal{X}_{\gamma}(\hbar)=\exp \left[\frac{Z_{\gamma}}{\hbar}+\frac{1}{4 \pi \mathrm{i}} \sum_{\mu} \Omega(\mu)\langle\gamma, \mu\rangle \int_{\hbar^{\prime} \in \mathbb{R}-Z_{\mu}} \frac{d \hbar^{\prime}}{\hbar^{\prime}} \frac{\hbar^{\prime}+\hbar}{\hbar^{\prime}-\hbar} \log \left(1+\mathcal{X}_{\mu}\left(\hbar^{\prime}\right)\right)\right]$

- Here Z_{γ} is the central charge (classical period).
- $\Omega(\mu) \in \mathbb{Z}$ counts BPS states with charge $\mu, \mu \in H_{1}(\Sigma, \mathbb{Z})$.
- Solutions to the integral equation solve the Riemann-Hilbert problem formulated by Gaiotto-Moore-Neitzke. The integrand encodes the jumping behavior across a BPS \mathcal{K}-wall. I

Integral equation for $\mathcal{X}_{\gamma}(\zeta)$

Question: Is there a q-deformed version of the integral equation? Perhaps by turning on the other half Ω-deformation?
So far, unclear how to approach this from the point of view of Ω-deformation...
The previous integral equation is the conformal limit [Gaiotto] of another integral equation [Gaiotto-Moore-Neitzke] obeyed by $\mathcal{X}_{\gamma}(\zeta)$. One could try to introduce q-deformation there. (ongoing with Moore and Neitzke.)
Reducing class- S theory on $S^{1}, \mathcal{X}_{\gamma}(\zeta)$ corresponds to the VEV of infrared line defects $X_{\gamma}(\zeta)$ frrapped around S^{1}. The integrals in TBA equation represents corrections to the semi-classical VEV.

Integral equation for $X_{\gamma}(\zeta)$

We introduce q-deformation by turning on half Ω-background along spacial $\mathbb{R}_{\epsilon}^{2}$. The \mathbb{R} line defects OPE become non-commutative, described by the quantum torus:

$$
X_{\gamma_{1}}(\zeta) * X_{\gamma_{2}}(\zeta)=(-q)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle} X_{\gamma_{1}+\gamma_{2}}(\zeta)
$$

- The integral equation we want should be an operator equation respecting the quantum torus.
- The integrand should be able to reproduce the wall-crossing behavior by conjugation of quantum dilogarithm.

Integral equation for $X_{\gamma}(\zeta)$

For generic q, this seems rather difficult. Simplifications happen when q is a root of unity.
Consider the space of ground states of 4 d IR theory on Melvin space $\mathbb{R}^{2} \times{ }_{q} S^{1}$. This space form a representation of the quantum torus. Via pullback of the UV-IR map F, it also forms a representation of the UV skein algebra.

When q is a root of unity, this is a finite-dimensional representation, labeled by flat complex connections on C. [Bonahon-Wong]

In this case, we could explicitly write down $X_{\gamma}(\zeta)$ in fertain matrix representation, and try to formulate the integral equation for individual matrix entries.

Work in progress...

Summary

- We have constructed a link "invariant" via UV-IR map. It reduces to well-known link invariants when $M=\mathbb{R}^{3}$.
- The UV-IR map counts BPS ground states with spin for line defects in class- S theories.
- It also has possible connections to exact WKB analysis in 4d $N=2$ theories. £

Thank You and Stay Healthy!

