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Abstract: The computation of transition amplitudes in Loop Quantum Gravity is still a hard task, especially without resorting to large-spins
approximations. In Marseille we are actively developing a C library (sl2cfoam) to compute Lorentzian EPRL amplitudes with many vertices. We
have already applied this tool to obtain interesting results in spinfoam cosmology and on the so-called& nbsp;flatness problemé& nbsp;of spinfoam
models. | will highlight the main aspects of our software library, describe the current applications and also introduce undergoing developments
(Montecarlo over spin space, tensor contractions, GPU offloading) that will greatly enhance the library's speed and capabilities.
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Spinfoams and the EPRL model

) Definitions and geometry
o Factorization of EPRL model for computation

The library s12cfoam

) Introduction and examples

Application: spinfoam cosmology

o Single-vertex model
o Many-vertices models

Application: flatness problem

o  Are spinfoams flat?
o Numerical insights into the resolution

Ongoing developments: s12cfoam-next

o New tools, new techniques, new performance
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Covariant LQG defines transition amplitudes between quantum states of geometry defined on discrete abstract graphs.
It helps to consider the graphs as duals to triangulations made by 4-simplices, tetrahedra, triangles and segments.

A spinfoam is a graph (2-complex) made by vertices, edges and faces. Given a
gauge group G, faces are colored by representations of G, edges are colored by
intertwiners (invariant tensors in tensor products of G). Edges are associated to
the matrix of parallel transport between two vertices (modulo gauge-invariance),
faces are associated to the smearing of the frame field along the dual
hyper-surface.

Clear geometrical interpretation in 4d: if the graph is dual to a triangulation by
4-simplices, then a vertex is dual to a 4-simplex, an edge is dual to tetrahedron,
a face is dual to a triangle.

The boundary of a n-dimensional spinfoam defines a (n-1)-dimensional spin
network state. A spinfoam represents one term of the expansion of the

discrete gravitational path-integral with prescribed boundary. ' _ ..
The corresp. partition function is the sum over all bulk degrees of freedom: Z(jﬂ ie) Hf djf He d'le H”“ Ay (]f’ Ze)

feifﬁR %
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The vertex amplitude contains the dynamics of the model. Classically for Lagrangian £ = B A F we have a
topological BF theory of the gauge group G. The quantum discretized version for compact gauge group G = SU(2) is
well-understood in 3d (Ponzano-Regge model, A, ~ {6j}) and 4d (Ooguri model, A, ~ {15j}).

To get the non-topological physically relevant 4d theory there are two steps:
e replace G = SU(2) with non-compact G = SL(2,C)
e introduce simplicity constraints to impose metricity of the G-connection and break topological invariance

The EPRL model implements the constraints at quantum level in a weak sense. ) (17d)
In a nutshell, this amounts to insert the so called Y-map at the interface between Y, D%n(ﬂ'} = Dﬁfn(h)
the vertices (on the edges), mapping SU(2) irreps to SL(2,C) y-simple irreps. :

Still open questions: Are the constraints imposed correctly? What is the Here | outline a numerical path
There are (positver) results with the large-spin limit of a single vertex'and = apply the model to physically

many vertices'? but the questions are not settled in full generality. " interesting settings.

[1] Barrett et al. (J.Math.Phys., 2009) 0902.1170
[2] Han and Zhang (Class. Quantum Grav., 2013) 1109.0499
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It is convenient!" to compute the EPRL vertex as the convergent i:@ @:E Images taken from [1]

Lo
sum over “shells” of the composition of the BF vertex ({ 15j }) 'Y dhe

with booster coefficients that are inserted along the edges. : C
Lyv - if lf

The computation of a single-vertex amplitude consists in the following steps:
1. fix a boundary state (spin network, coherent, ...) and number of shells As
compute all the { 15 } symbols and booster coefficients for each shell Z( ) & (zf )"‘E)
multiply and sum these over all shells 2 o

v

contract with boundary state y ( /‘°° dr %mh r H a0 )
study the convergence in the As shell parameter ’ =

For a many-vertices amplitude:
1. draw the spinfoam graph and write down all the summations over bulk intertwiners and
bulk faces (possibly infinite and divergent without renormalization, cutoffs needed)
compute the single-vertex amplitudes for all combinations of bulk intertwiners and faces
multiply and sum all combinations of single-vertex amplitudes
contract with boundary state
study the convergence in all the cutoff parameters

[1] Speziale (J.Math.Phys., 2017) 1609.01632
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A library for computing EPRL transition amplitudes [ %

Developed in Marseille by
- med
- Giorgio Sarno
- Pietro Dona
(with contributions from Frangois Collet).

The library is written in C and consists of ~12000 lines of
code. It uses external libraries for various tasks, in
particular:

- WIGXJPFS! for { 3j, 6], 9j } symbols

- GMP, MPFR, MPC for arbitrary precision arithmetic

- OpenMP for parallelization

[1] github.com/qg-cpt-marseille/si2cfoam
[2] Dona, Sarno (GRG, 2018) 1807.03066
[3] Johansson, Forssén (SIAM Journal on Scientific Computing, 2015) 1504.08329
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#include “sl2cfoam.h”; sl2cfoam_four_simplex( ji, j2,

Computations included in the library:
EPRL 4d and 3d vertex amplitudes
BF 4d and 3d vertex amplitudes
booster coefficients
SL(2, C) recoupling symbols using recursion relations
Livine-Speziale coherent states coefficients

The main task is the computation of a single 4d Lorentzian EPRL vertex amplitude. Inputs are 15 boundary
spins, y (Barbero-Immirzi constant) and As (number of shells). Then:

e all the necessary Wigner symbols and booster coefficients are computed
e these are composed and summed over virtual intertwiners and spins to obtain the amplitude

GNU nano 4.8

main( arg, ** argv) {
sl2cfoam_init();
two_J = ( Yatoi(argv[1]);
ampl = sl2cfoam_four_simplex(two_J, two_J, two_J, two_J,two_J, two_J, two_J, two_J,two_J, two_3J,
6,6,0,80,6,2, 0.2);
printf("amplitude 6g\n", ampl);

sl2cfoam_free();
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For very low boundary spins (j ~ 2) and very low number of shells (As ~ 2) the amplitudes are
computed in seconds on a normal laptop.

All the Wigner symbols ({6j}s) and all the boosters are computed just once and stored into
hashtables on disk for reuse.

The computed amplitudes are stored, too (hence 2nd call is instantaneous).

t(s)
The time grows with a power law as boundary spins and/or 3

number of shell increase. If the avg. boundary spin isj an
estimate of the growth factoris (25 + 1)*(As + 1)°.

0.8

0.1

This comes from cycling over all combinations of 4 virtual
intertwiners and 6 virtual spins.

Image taken from [3]

The library has been initially applied to test the large-spin
asymptotics of the single vertex, both with the BF and the
Lorentzian EPRL amplitudes and with Euclidean and Lorentzian
boundary conditions!" 2,

[1] Dona et al. (Class. Quantum Grav., 2018) 1708.01727
[2] Dona et al. (PRD, 2019) 1903.12624
[3] Dona, Sarno (GRG, 2018) 1807.03066

Image taken from [2]
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A first, physically interesting application['. Model a closed universe as a topological 3-sphere. Its simplest regular
triangulation is the 4-simplex, which is dual to a single spinfoam vertex.
Set boundary spins (J, J, - --,4;%1,- - -, i5) for the vertex and define the state |v) as

(J:inlv0) = Av(J,in)

The 4-simplex boundary has a unique connected component. If we interpret it as the future one then:
=  Ay(j,ipn) is the amplitude for the transition nothing-to-|j; i) (to lowest order in spinfoam expansion)
- the vertex amplitude describes the amplitude of the transition from nothing to the 3-geometry of the boundary

- the state |¢y) is the analogue in Lorentzian LQG of the Hawking “no-boundary” wavefunction defined with a
(Euclidean) path-integral over compact geometries. Explicitly:

|w0> — Z P1yeeeyi5) Av(j; Za) ‘j‘) ?’1> - & ’97 Z5>

The boundary spins j are taken to be equal and fixed, they determine the areas of the boundary triangles.
The boundary intertwiners are quantum degrees of freedom and describe the “shapes” of the boundary tetrahedra.
We can define geometrical observables on the state |i,) and study them as functions of the boundary spinsj.

[1] Gozzini, Vidotto 1906.02211
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There is no “bulk” so we define operators on the 3d boundary. Examples:
intertwiners (3d dihedral angles)
volume
length!"!
“3d scalar curvature” @

We can also look at how the entanglement entropy between different
(groups of) tetrahedra scales and compare with other states!.

The amplitudes are computed for all boundary values. Results:
all the expectation values are compatible with regular tetrahedra
on the boundary of a regular geometrical 4-simplex
large fluctuations (spread of operators)
correlations do not vanish asj — oo
results qualitatively similar if using BF or Lorentzian EPRL vertex
(except for entanglement entropy)

[1] Bianchi (Nuclear Physics B, 2009) 0806.4710
[2] Alesci et al. (PRD, 2014) 1403.3190
[3] Bianchi et al. (PRD, 2019) 1812.10996
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External 3d dihedral angle exp. val

There is no “bulk” so we define operators on the 3d boundary. Examples: R '
intertwiners (3d dihedral angles) P
volume
length!"! |
“3d scalar curvature” @ S oo

-0.3332

-0.3334

We can also look at how the entanglement entropy between different s | [fit with f(j) =—1/3 |
(groups of) tetrahedra scales and compare with other states!”. '

-0.3336

st

The amplitudes are computed for all boundary values. Results: External 3d dihedral angle spread
all the expectation values are compatible with regular tetrahedra R L L R
on the boundary of a regular geometrical 4-simplex '
large fluctuations (spread of operators)
correlations do not vanish asj — co
results qualitatively similar if using BF or Lorentzian EPRL vertex
(except for entanglement entropy)

[1] Bianchi (Nuclear Physics B, 2009) 0806.4710
[2] Alesci et al. (PRD, 2014) 1403.3190
[3] Bianchi et al. (PRD, 2019) 1812.10996
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Volume expectation value 3d scalar curvature exp. value . ‘ ‘ ‘

3/2
fit with £(j) = 0.58+ 0.85x (\/_j(_i n 1)) i

2

fit with f(j) = ~0.54+0.68 j(j+1))u

3d scalar curvature spread

F. Gozzini - Advances in numerical techniques for spinfoam amplitudes with applications 2020
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It is important to go beyond the single-vertex approximation:
1.  study correlations between non-neighboring tetrahedra
2. understand the “flow” of local observables
3. compute bulk observables

“Curse of dimensionality” problem: the values to be summed
increase exponentially in the number of boundary tetrahedra.
For N tetrahedra there are (2j + 1) possible intertwiners! STAR (5 vertices)

Single vertex

Solution: explore the intertwiner space using Montecarlo sampling.
The density function is (1g|tg) (normalized) as in standard Quantum
MC with the wavefunction.

(Q) - Z(ia) A%(ja ia.) (%|Q|%) = Z{i(l}<in‘Q|ia->

So far we considered graphs with 5, 9, 16, 20 boundary e

tetrahedra and up to 1 internal face. (3 vertices, 1 bulk face)
16-CELL (BF, no bulk)
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Results (preliminary):
- all the expectation values compatible with the classical corresponding geometry
fluctuations are large
correlations decrease sharply as “vertex-distance” increases
boundary observables similar between BF and EPRL cases
bulk observables depend crucially on the model: BF strongly differs from EPRL

External 3d dihedral angle exp. value, STAR model Volume correlations, STAR model Bulk face spin exp. value, DELTA3 model

@ adjacent, same vertex
—@— adjacent, diff. vertices
—@— 2 jumps

@ 3 jumps 1st type

@ 3 jumps 2nd type

2——0. v 1
- ° /'\B/O \-/0\B
~e 4
o © @

regfar exact FLAT
—@— avg over 10 runs © EPRL
Q@  avgover 3runs " ® &F

8 10

4

F. Gozzini - Advances in numerical techniques for spinfoam amplitudes with applications - 10/09/2020
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=>  Hints at the semiclassical regime with many vertices, locality, non-trivial dynamics...
->  Can we deduce some experimentally observables consequences?

F. Gozzini - Advances in numerical techniques for spinfoam amplitudes with applications - 10/09/2020
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In a recent work!" we applied the library to study the flatness problem of spinfoam theories.
This states that the semiclassical (large-j) limit of EPRL model is dominated by flat geometries,
i.e. the solutions to the semiclassical e.0.m. that emerge from EPRL dynamics are all flat.

The simplest argument leading to this claim is based on the known single-vertex asymptotics

(with coherent intertwiners) | A, (5, i fq) ~ cos >y jr O¢(Tifa) |-

Simple variation w.r.t the spins sets the deficit angle 6 = 0. Of course there are problems with
this approach, in particular the spins are not independent on-shell of the constraints for which
the asymptotic formula holds. There are other, different arguments but due to various
technicalities the answer is not yet clear.

Crucially these arguments apply not only to the EPRL model but also to the simpler BF model.
->  Can we test these claims with an exact calculation, without approximations?

We need a spinfoam graph with at least one internal (dynamical) face. The simplest one
is the A3 graph with 3 vertices, 15 boundary links, 9 boundary intertwiners.

[1] Dona, Gozzini, Sarno 2004.12911 (accepted for publication in PRD)
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We defined 3 different corresponding geometries, one with = ;(_Mz“ 1)%: (1,_[ L 1)) Z

vanishing deficit angle and two with non-vanishing one.

For each geometry we computed the coherent state coeff..

We used the library to compute the amplitude

for each different boundary configuration.

For each bulk face spin x :

o compute all bulk intertwiner k,

compute all { 15j }s for all k, and boundary i_

O
o multiply them and sum over k,
o multiply with coherent states and some over all i

We had to search for the emergence of stationary phase points.
Rescaling the boundary spins is too expensive (repeat the above
steps for each value of the rescaling parameter).

We used an algorithm!" that detects stationary phase points

by looking at sudden peaks in the rolling average over the bulk
variables (after filtering noise, amplifying etc...).

[1] Dona, Gozzini, Sarno (Class. Quantum Grav., 2020) 1909.07832
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Flat configuration
A=30

=401

=40.2

Xnumerical

Xanalytical

30

Curved configuration

A=20
=25+1 1.0

=25.2

XanalythG' ......'....'..u....; .

Xnumerical

: —1.0
L e2e%%8 ., 00000 0cscssense

40

F. Gozzini - Advances in numerical techniques for spinfoam amplitudes with applications - 10/09/2020
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Results: not only the flat configurations, but also the curved configurations have a stationary phase point, hence are not

suppressed by the quantum BF dynamics.

There is a clear tension with the flatness claims. We suggest that the tension is solved if the angles that appear in the
flatness arguments are not to be interpreted as deficit angles of the spin connection, i.e. as deficit angles a la Regge.

The result appears even more puzzling since classical BF theory is flat. What the numerics shows in this case is that the
BF equations of motion impose flatness of the SU(2)-connection but do not require the deficit angles computed with an

associated metric connection to vanish.

Our result provides an explicit counterexample to flatness claims.
But there is more work to be done:
compute with the EPRL vertex
compute with different boundary data, especially
Lorentzian boundary (if any) with EPRL vertex
consider a more complex graph with at least one bulk segment
to compare to non-trivial Regge dynamics

Pirsa: 20090003
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numerical

analytical

memory (GB)

time (h)

A=10:

13x1

13.4

2

0.2

A=12:

161

16.1

6

0.4

A=14:

18+1

18.8

16

0.9

A=16:

2141

21.5

33

3

A=18:

2341

24.1

65

7.8

A=20:

26+ 1

26.8

121

21

A=30:

40x1

40.2

~ 2500

~ 2700

However, this first computation already required
considerable time and resources...

~
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Better name needed :-)

Many interesting computations require higher complexity:

graphs with bulk segments

physical models (black hole-to-white hole)
refining & coarse-graining

etc ...

% It is possible to write much faster code using
)
D

high-performance computing practices and
techniques inspired by tensor networks.

Currently we are rewriting most of the code from scratch.
The new version will provide:

Pirsa: 20090003

much faster booster computation
much faster vertex assembly
composition of multiple vertices on the GPU
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Booster coefficients:
- computation over multiple cluster nodes (MPI) Expected speedup: 100x and more
- more efficient arithmetic and smarter integration

Single-vertex assembly:

- computation over multiple cluster nodes (MPI) Expected speedup: 1000x and more
- sums as tensor contractions using loop-over-GEMM

Ai1,92,13) = D5, D ke Dky BUis ku, ko) B(i2; ka2, k3) B(ia; ks, k1)

l

Afizis — ¢ [(B[iﬂfl]kz % (Bt)kz[h/fzs]) X B[i:akz}kl}

Multiple-vertices: !
compose vertices as tensor contractions Expected speedup: 1000x and more
GPU offloading of contractions using CUDA
tensor networks techniques? (SVD)
Montecarlo sampling?

(speedup for each step)
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Numerics is starting to play an important role in spinfoam theory

There are now tools to study non-trivial problems

Soon we will have more powerful tools to study more complex problems
Future research directions:

settle the flatness problem

test the semiclassical dynamics of the EPRL model
spinfoam cosmology with many-vertices

study renormalization flow with exact vertex

think of physically relevant models and observables

:~$ cowsay THANKS!

< THANKS! >
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