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Abstract: The interplay between topology, strong correlations, and Kinetic& nbsp;energy presents a new challenge for the theory of quantum matter.
In this&nbsp;talk | will describe some recent progress on understanding a ssimple& nbsp;class of problems where& nbsp;these effects can all be
analytically handled. | will first present results on a microscopic lowest Landau theory of the composite fermi liquid state of bosons at filling
1.&nbsp; Building on work from the 1990s | will derive an effective& nbsp;field theory for this system that takes the form of a non-commutative
field theory. | will show that an approximate mapping of this theory to a commutative field theory yield the familiar Halperin-Lee-Read action but
with parameters correctly described by the interaction strength. | will describe the effect of afinite bandwidth& nbsp; introduced to the Landau Level
and describe the evolution between the composite Fermi liquid and a boson superfluid. Time permitting, | will describe some generalizations that
will include the evolution between a Quantum Anomalous Hall state and a Landau Fermi liquid that may be experimentally accessible in moire
graphene systems.
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A new frontier in quantum matter science:

Band topology meets strong correlation

Physics of interacting electrons in a partially filled topological band??

The main conceptually new theoretical problem posed by moire graphene materials.

Other contexts - ongoing development (Checkelsky, Comin,...)
of Kagome flat band materials (eg CoSn).
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Microscopic modeling of a typical correlated solid

Remote empty Typical interaction strength << gap between active and
bands remote bands.
u ........................................ Active bands

Project interaction to active band to obtain effective model in
the Bloch (k-space) basis.

Remote
filled
bands

- e . e e 7 S LT . Y . L
) = fk 5k S55k + fkl:kz,kz U(kl’ k2, k‘B)cEl cgzcksc—(k1+kz+ks)

(suppressing spin/other internal indices)
Additional: Phonons, impurities,....
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Challenge to this paradigm

Band topology meets strong correlation

The story of the previous 2 slides becomes complicated if the bands in
question are topological.
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Thouless et al 1983;
Chern bands in 2d Haldane 1988

In 2d, for an isolated band, total momentum space magnetic flux sz d?k By, =
27 C,, is quantized with an integer C,, (“Chern number”)

C,, counts the number of Berry magnetic monopoles inside the k-space torus,
and is a topological invariant.

Bands with different C, are topologically distinct.
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Physical consequences of Chern number

Chern insulator = material with a filled Chern band.

e
h

Jz = Ozyl, where 04y = is quantized and measures the Chern number
Integer quantum Hall effect
Other related phenomena: chiral edge states

Requires absence of time reversal symmetry.
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Chern bands and Wannier representability

Theorem (Brouder et al 2007): Exponentially localized Wannier functions cannot
be constructed for Chern bands.

Intuition: A Chern band encloses a magnetic monopole in k-space
=> Phase of Bloch wave-function cannot be globally well-defined

The integrand in the k-space integral that defines the Wannier function is not
smooth => no well localized Wannier functions.

Corollary: A correlated partially filled Chern band cannot be simply described by a
lattice effective model (without introducing extra auxiliary bands to "“cancel” the
Chern number).
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Strong correlations in a special topological flat band:
The quantum Hall effect

A single Landau level: a special case of a Chern band
(with flat energy dispersion, flat Berry curvature,...)

Puy [nre?]

Strong correlations at partial filling give rich physics of
fractional quantum Hall systems. T el || ST A

MAGNETIC FIELD [T]

Do not understand in terms of lattice tightbinding models
but in other ways (eg, wavefunctions,
effective field theories,...... )
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How to deal with strong correlations away from this special (Landau level) limit of a Chern band,
or for other topological bands, is largely an open question in many body physics.

This is precisely the situation presented to us by many moire graphene materials.

Can we base the theory on our understanding of correlated Landau levels?

May be but there are some problems.....
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?? Generalizing from Landau levels: Problem | ??

Differences between a Landau Level and moire topological bands

|. Time-reversal symmetric (so roughly like a system with two sets of Landau levels
corresponding to equal and opposite fields, coupled together by interactions).

2. When there are Chern bands, the Berry curvature is not uniform within the
Brillouin zone.

3. Bandwidth is not zero (and can be tuned in some systems)

Nevertheless, intuition from quantum Hall is less likely to misguide, and could be a
viable starting point.
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?? Generalizing from Landau levels: Problem [l 2?

More basic problem:

Dealing analytically with a microscopic model restricted to a single Landau level is
hard and not satisfactorily understood even for classic quantum Hall phenomena.
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A program and plan of talk

Identify simple models to study the interplay of
band topology, strong correlations, and kinetic energy.

Part I: Revisit old unsettled questions about quantum Hall physics within a
single Landau level (usually the Lowest level)

Part |l: Broaden Landau level into a Chern band to study competition with kinetic energy.
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2d electrons in the ~"quantum Hall” regime
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Composite fermi liquid theory
(Halperin, Lee, Read (HLR) 1993)

Assume (Jain 89) each electron
captures two flux quanta to form a
new fermion

(“Composite fermions” ) £ 4] 4] 4

See reduced effective field . ¢ |e g & # i '}
B* =B - (2h/e)p

Atv=1/2,B*=0

Effective theory:

- . A V —i(@+ A))? 1
L=vcp (@at —ap — EASM E3 ( Zgjn ) ) Yor + gaufumaya,\ (1)

(Short-hand for better version with properly quantized Chern-Simons terms)
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Other composite fermi liquids

|. Electronsatv = 1/4,.....

2. Bosons at filling vV = | (numerics: ground state is a version gapped by pairing
but the metallic state is still worth studying)

In these cases too, the HLR construction admits a composite fermi liquid ground
state

Effective theory: Fermi surface + U(l) gauge field with Chern-Simons coupling

Composite Fermi Liquids (CFLs) are central to our overall understanding of
quantum Hall phenomena.
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The many successes of HLR

Explanation/succesfull prediction of many aspects of the observed metallic state
Parent state of nearby Jain sequence of prominent quantum Hall states
Parent state of paired non-abelian quantum Hall state at same filling

Successful backing from numerics

Despite these successes there were some vexing open questions that were
extensively thought about in the 1990s without resolution.
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Unsatisfactory aspects of the HLR theory-|

Theory should make sense within AN 4

the Lowest Landau Level (LLL) but HLR not ><

suited to projecting to LLL. * - <
1%6 Iﬁwc

Mean field effective mass = bare electron mass

in HLR

Vint < hw,: project to LLL Vint € hwg: project to LLL

LLL limit: take m to zero; what happens??

Much discussed in the late 90s (Shankar, Murthy; Read; Halperin, Stern, Simon, van
Oppen; D.-H. Lee, Pasquier, Haldane,.......) but dust never settled.

Experience of learning to work within LLL will be useful in other
contexts (as LLL is simplest example of a topological band)
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Unsatisfactory aspects of the HLR theory-ll

At V = 1/2 LLL theory has an extra particle-

hole symmetry that HLR is blind to. OO0 9000

This progress sidestepped issue of LLL projection;

I will not discuss p/h symmetry today. PiseiEmions s fiice density

+ U(I) gauge fields
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The basic problem

Particles in lowest Landau level with 2-body repulsive interactions.

|m): Some basis for single particle states in LLL

Many body states spanned by |mi,msz, ms,......,my) (anti)symmetrized for
(fermions) bosons.

Hamiltonian has only interaction energy

H = %/ ((217:)12U(q)pL(Q)pL(_Q)

Projected “density” operators pr(q) satisfy the “GMP algebra” (a.k.a W

algebra) S~

) S1 axq 7 Girvin-MacDonald-Platzman
pr(@): pi(q)] = 2isin (%) () e s

q212
U(q) = e~ 2" Uy(q) with Uy the Fourier transform of the microscopic 2-
body interaction.
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Composite Fermi liquid of bosons atv = |:
Important progress in the 1990s

Pasquier-Haldane (1998): Redundant representation of density operator
satisfying GMP algebra in terms of fermionic partons (= LLL version of composite fermions)

Impose constraints to recover physical Hilbert space.
Constraint operators themselves satisfy GMP algebra (with opposite sign).

Read(1998): "W« gauge structure” broken to U(l) by mean field composite fermi liquid
solution.

Low energy theory: Fermi surface + U(l) gauge field
Fluctuation effects treated diagrammatically in a conserving approximation;
Physically sensible final results.

Not much further development since.....
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Composite Fermi liquid of bosons atv = |:
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solution.
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Physically sensible final results.
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Open questions about Pasquier-Haldane-Read

I. What is the low energy effective field theory?

2. How related to HLR?

3. How to treat competition with paired bosonic Pfaffian at same filling?

Jain states at proximate filling?

4. Can these methods be generalized to other problems?
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A suggested effective field theory

Composite fermion as a fermionic vortex

- . 1 . 7 7
£vcfl . w'v(ar A wo)% 45 2—TTL*| (82 < ZCL@') %\2 - %euuAAuaua’)\ - EE,U,VAAMBVAA

Suggested in Read’s original 1998 paper but not explicitly derived.

No Chern-Simons term in action; contrast with usual HLR (with renormalized parameters).

= : 1 _ i
EHLR = 1,0(&,— + Z(CLO + Ao))wv + ﬁ' (82 + Z(O',@' + AI)) ?,bv‘Q — EEMV)\GM&,CLA

Do they describe the same IR physics, or are they distinct theories?

Which of these is actually obtained in the Pasquier-Haldane-Read microscopic theory?

See also:Alicea, Hermele, Motrunich, Fisher(2005) - flux attachment to fermionize vortices (not in LLL)
Wang, TS (2016) - standard HLR + Fermi surface Berry phase
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Our answers

|. This bosonic CFL is described by a non-commutative field theory of fermions + U(1) gauge field
with no Chern-Simons term

2. Approximate map(*) to commutative field theory for long wavelength, low amplitude
gauge fluctuations: HLR (+ suleading corrections) with parameters determined by interactions

(*) Using Seiberg,Witten (1999)
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Remarks on non-commutative field theory

Field theories defined in a space-time where spatial coordinates do not commute.
Long history in physics/math literature; much studied in high energy physics 1998-2003

Of course the best example of such a space is the Landau Level - so perhaps not
surprising that LLL effective theories are non-commutative.

Incompressible states: Proposals for a non-commutative Chern-Simons description (Susskind 2001,
Polychronakos 2002,....... )

Connection to microscopics? Added value over standard commutative TQFT description?

Here | will focus on the metallic state of bosons atv = 1.
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Pasquier-Haldane-Read parton construction

Represent states in many body boson Hilbert space by

My, e, mpy) = €172 BN o cl |0)

nimi mamsz

Symmetric Anti-symmetric
Tensor

¢mn: usual fermion anticommutation relations; destroy fermionic partons.

Physical states: singlets under SU(N) rotations on the right:

R
Cmn — C?nn’Un/n

R

nn! — CT

nm

Generators p Cmns Of these SU(N)g satisfy constraint:

PE&M |wphy5> = (Snn’ ‘ t;[)phys>

‘Left’ SU(N) rotations generated by P}an' = ch,Cmn are physical operators.

Take N — oo, and |m), |n) as single particle basis states for a Landau level.
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Momentum space formulation

Fourier transform c,,, using magnetic translation operator 7, = eik'R\

d?k
Cmn = W <m‘7-k|n>ck Guiding center

\ coordinate

Usual fermion operator

Fourier-transformed density operators (= fermion bilinears) satisfy:

o % ! l2
[pL (q), pL (q’)] = 27 sIn (%) pL (q + q,) GMP algebra

o q X qf l2
(), )] = ~2isin (D) g1 ) nsconp e

(o (@), p"(d')] =0

The Hamiltonian H = 3 [ (d s=U(a)pr(a)pr(—a)

Constraint p(q)|phys) = 0 for all non-zero q.
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Hartree-Fock solution

‘H is quartic in fermions - first study within Hartree-Fock.

A simple (global) symmetry preserving state:

(cl o) = med@ (k — K')

Fermions acquire a dispersion (*) and form a Fermi sea with area set by their density.

Mean field composite fermi liquid
(*) Approximate as parabolic - what matters is near Femi surface anyway.

Mean field action:

' d?’k  dex k2 +
SHE = / ol (27)2 X dr (Qm*) Fief
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Beyond mean field
Read (1998): Diagrammatic conserving approximation but here we seek an effective Lagrangian.

Mean field breaks infinite gauge symmetry generated by p’ - the breaking
is weak as q — 0.

=> Include small-q gauge fluctuations on top of mean field

Difficulty: In k-space, mean field state is simple but pgr transformations mix
states at different momenta.

In m, n (Landau orbital) basis, gauge transformations look simple but mean
field state is complicated.
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Convenient formulation:
Fields in non-commutative space and time

Define abstract fields as a function of the non-commuting guiding center coordinate

2
k .
C(R,T):f = e Re
(2m)2

Here [R;, R;] = i0;; = iO¢;;.

0 = —I% = “non-commutativity” parameter.

R is an operator in the space of single particle states of the LLL.

Therefore ¢(R, 7) is also an operator in this space.

Product of two such ‘non-commutative” fields f(R) and g(R) has a Fourier
transform

d2kd?k’'  Okxk! x : ,
f(R)g(R) = f (QT)d (8_Z2f(k)§(k')) ciktk) R
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Convenient formulation:
Fields in non-commutative space and time (cont’d)

To any f(R) associate an ordinary field f(x) defined in commutative space
through the standard Fourier transform

7 e A
x)= [ —e
f(x) f 2m) f
The product f(R)g(R) is then associated with a ‘star product’

ﬁamig)

F(x) % g(x) = €' 7 % F(x)g(x) lrmx

The star product is associative but not commutative:.

Can define derivatives, and integrals
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How does this help?

Simple action of transformations generated by pr, g:
c(x,7) = UL (x,7) * e(x,7) * UR(x, 7)

Here take UL = ¢¥92,2(57) with exponential defined through power series
with all products being star products.

Mean field action also looks simple:

de(x, 1
cle T)+

Sur = / drd*x (C(X,T)* - VC(X,T)*VC(X,T))

2m

Now require that action be invariant under long wavelength "right’ gauge transformations:
Replace all derivatives by covariant derivatives
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Non-commutative action for composite fermi liquid

| —
S = /dzxdﬁ' ¢*x Doc+iagp + 2—*DicD7;c
= 2

The covariant derivatives
Dpe=0ge —lcway — 18y wE
a,: dynamical non-commutative U(1) gauge field coupling to ‘right’ currents.

A, background non-commutative U(1) gauge field coupling to ‘left’ currents

Fermions at finite density, form a Fermi surface; gauge fields vary slowly on scale lg.

Gauge invariance:

c — c+icxlr+10 xc
a, — a,+0,0r+i(a,*0r—0r*a,)
AM — A“ -+ @ﬁL —+ ?(GL * A‘_L — A,u. * HL)
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Comments

I. Theory has Fermi surface + dynamical U(l) gauge field without any Chern-Simons term but is
formulated in non-commutative space-time.

2. Hartree-Fock theory gives estimate of bare effective mass m* in terms of interaction strength.
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How to compare with previous proposals?

Previous proposed field theories (HLR, fermionic vortex liquid) are all ordinary commutative field
theories.

However, the non-commutativity occurs at scale of magnetic length, we can hope to approximate
long wavelength gauge fluctuations in terms of a "coarge-grained’ commutative theory.
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Key tool: The Seiberg-Witten map

Seiberg, Witten (1999): Map pure non-commutative gauge theory with
gauge fields a, to a commutative gauge theory with gauge fields a, in a sys-
tematic expansion in powers of ©.

Expansion is local (coefficients only involve fields and derivatives at same space-time point).

Gauge transformation parameters are mapped as functions of the gauge field configurations
themselves.

Here we will need a small generalization that includes the fermion fields.

Pure U(1) gauge theory: Exact non-perturbative Seiberg-Witten map exists
(Liu, Michelson, Okawa, Ooguri 01, Mukhi, Suryanarayana 01).

Appealing physical interpretation: Relation to map between Lagrangian and
Eulerian descriptions of a fluid (Jackiw, Pi, Polychronakos, 02; also Susskind
01)
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Seiberg-Witten map to linear order

A(A) = A+ AA(A) a(d) = a+ Aa(a)
BL(HAL,A) :éL-FABL(éL,A) Hn(ép&) :én-FAHR_(éR,&) (1)
c(, A, 4) =Y+ Ap(, A, a)

Here AA, Aa, ABg, A, and Ac are all of 0(©).

The map can be found explicitly by requiring that the hatted fields satisfy

ordinary U(l) gauge invariance for both dynamical and background gauge fields.

Strategy: Plug in the map to get an effective commutative gauge theory
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Emergence of HLR

Effective commutative Lagrangian

£ = ‘CHLR I L‘co'rr
Liipg = ?ﬂaow—z(ao-}-Ao)ww-anop-i- —‘ CLZ-I-A ) w‘ —z’—eo‘ﬂ’yaaagav
o R R _
Ecorr = _Eeaﬁ ((fO,B - FOﬁ)aoc('d}w) - (aﬂ - Aﬁ)(wDow . |Dz"/)’ ))

First term is just the standard HLR theory!
(but with correct effective mass)

Second term is a correction that is small for long wavelength, low amplitude gauge fluctuations
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Comments

|. The commutative theory has a Chern-Simons term (as expected in HLR) which is
absent in the non-commutative theory.

This is traced to the non-trivial form factors in the density operator in the
non-commutative theory (roughly correspond to a non-trivial Berry phase)

2. Can use the commutative effective theory to, say, study Jain states near v = |
(technically a bit hard within the microscopic Pasquier-Haldane-Read approach)

The correction terms may need to be included for some purposes.

3.We do not find the fermionic vortex field theory.
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A program and plan of talk

Identify simple models to study the interplay of
band topology, strong correlations, and kinetic energy.

Part |: Revisit old unsettled questions about quantum Hall physics within a
single Landau level (usually the Lowest level)

Part Il: Broaden Landau level into a Chern band to study competition with kinetic energy.
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Introducing bandwidth to a Landau level

Add a periodic potential whose unit cell encloses one flux quantum .

Concrete choice: Square unit cell with lattice constant I. $o | do

Flux through unit cell [?/1% = 2.

Discrete magnetic translations by [Z,l9 commute => Can define crystal

momentum inside first Brillouin zone.

Hy =V(—q)pr(a)
V(q) = [ d*zVy(cos(%2) + cos(ZY)

This periodic potential leads to a dispersion of single particle states.

Add V

LLL Chern band with non-zero bandwidth

v
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Topological bands, correlations, and kinetic energy: a
simple model

LLL + periodic potential + interactions:

M= ] (;’;)12 ~U(a)pz(a)pz(—a)
/

Projected “density” operators pr(q) satisfy the “GMP algebra” (a.k.a W,
algebra)

V(—q)pr(a)

Correlations

LLL, band topology

‘TZIff

U(q) = e~z Up(q) with Uy the Fourier transform of the microscopic 2-
body interaction.
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Topological bands, correlations, and kinetic energy: a
simple model

LLL + periodic potential + interactions:

' d3%q Bandwidth
M = ] (SU(@)pL(a)ps(—a)
(27)
Correlations
Projected “density” operators pr(q) satisfy the “GMP algebra” (a.k.a W,

algebra)

LLL, band topology

‘TZIff

U(q) = e~z Up(q) with Uy the Fourier transform of the microscopic 2-
body interaction.
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Limiting cases

mn ViU

Quantum Hall Conductor

V = 0: Classic Quantum Hall
= Incompressible quantum Hall ground states/compressible composite fermi liquids
depending on filling and particle statistics.

U = 0: Free particles in a dispersive band
- Bose condensate/Fermi gas depending on statistics
Small U: Superfluid/Fermi liquid depending on statistics.

Change V/U: Evolution from quantum Hall ground state to superfluid/fermi liquid.
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Examples

mn ViU

_ —— - o Electrons at v = 1/3

Laughlin state Fermi liquid
. : mn ViU
Comp.osn.'.e Fermi . Electrons at v = /2
Liquid Fermi liquid
mn ViU
Laughlin state =——0 -~~~ Bosonsatv = /2
Superfluid

| will briefly describe progress in analyzing this evolution for bosons at v = |.
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Bosons at V = | in a periodic potential: Mean field

Study evolution from composite fermi liquid to superfluid using the
formalism described in first part of talk.

WeakV: Composite fermion dispersion gets a band gap at Brillouin zone boundary.

Fermi surface reconstructs into a "particle’-like sheet and “hole’-like sheet of equal area.

IncreaseV: Particle and hole sheets shrink and eventually disappear.

Composite fermions completely fill a single band which however itself has a Chern number -1

i o5 ] e e P

ViU =0.1 00w oo = 00 ™ & L I, L ViU = |

Evolution of mean field composite fermion band structure
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Bosons at V = | in a periodic potential:
Fluctuations beyond mean field

WeakV: Fermi surface reconstructs into a “particle’-like sheet and "hole’-like sheet of equal area]

These couple to a dynamical U(1) gauge field - HLR-like action in commutative approximation.

IncreaseV: Composite fermions completely fill a single band which however itself has a
Chern number -1
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Bosons at vV = | in a periodic potential:
Fluctuations beyond mean field

WeakV: Fermi surface reconstructs into a "particle’-like sheet and "hole’-like sheet of equal area.

These couple to a dynamical U(l) gauge field - HLR-like action in commutative approximation.

IncreaseV: Composite fermions completely fill a single band which however itself has a
Chern number -1

Integrate out composite fermions: effective action (in commutative approximation) is

1 2 _ Ada 1 . .
/d3x4(&+A)d(d+A)+&dd— O~ AdA
w

Integrating out a sets A=0. Response of a superfluid!
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Pictorial sketch

Mean field:

-&- -

CF metal CF Chern viJ
insulator
+ OWNSNY

Fluctuations:

5 =

Usual CFL Superfluid T
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Comments/generalizations (cont’d)

|.This parton framework has enabled analytic understanding both the composite fermi liquid and its
evolution into the superfluid in a periodic potential.

Can also include composite fermion pairing to access the bosons Pfaffian state.

2. Generalizations - multicomponent bosons/fermions at total integer filling in LLL +
periodic potential

Example: Spinful electrons at total filling .
SmallV - Quantum Hall ferromagnet
LargeV - Fermi liquid

In progress: Address using a composite boson theory formulated within the LLL
(and may be accessible experimentally in some moire graphene systems)
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Outlook

Revisiting quantum Hall theory:

- Other composite fermi liquids?

Some simple generalizations easy (eg spinfull bosons at total filling 1)
Fermions at 1/2-filling?

In all cases it is natural that a LLL theory is non-commutative .
- Coupling to geometry?

General correlated topological bands:

= Correlated Chern bands with non-uniform Berry curvature?
= Other kinds of band topology?
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