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Abstract: The sign problem is a widespread numerical hurdle preventing us from simulating the equilibrium behaviour of many interesting models,
most notably the Hubbard model. Research aimed at solving the sign problem, via various clever manipulations, has been thriving for along time
with various recent exciting results. The complementary question, of whether some phases of matter forbid the existence of any sign-free
microscopic model, has received attention only recently. In this talk, I&€™II review recent progress and discuss a novel and quite general criteriawe
obtained for when a topological quantum field theory has no sign-free microscopic model. 1&E™I| also point out relations to sign problems in
frustrated magnets and to the notion of quantum supremacy.
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Physical footprints of
INntrinsic sign problems
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O. Golan, A. Smith, Z.R. Arxiv (2020) /. Ringel, Perimeter 2020
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Outline

. Quantum Monte Carlo, Intrinsic Sign Problems, Motivations

A differential geometry angle on sign problems.
The full exchange statistics criterion.

Frustrated magnets. >

Outlook
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Path integral Quantum Monte Carlo
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Quantum to Classical mapping

Z = Tr] e—-ﬁH] = Tr[I™, e—A-rH] = Tr[II™, e—A'r(K-I-V)]
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“Classical” (d+1)-dim

Quantum d-dim




What is an intrinsic sign problem (Bosons)?
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Why is that a problem 7

Without signs
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Why is that a problem
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Why Is that a problem 7

Without signs
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Intrinsic sign problem for Fermions (1)

Path integrals for Fermions include Grassman variables which are
imherently sign-full

To circumvent the Grassmans numerically, one integrates over them

Z = f D¢Drpe 5S¢~ 5w
:/que_s‘*’Det (Dy)

Various locally verifiable criteria, known as “de-sign” principals, can be
used to ensure that the resulting determinant is non-negative.

One of the basic ones is time-reversal-symmetry, but there are many
more...
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Intrinsic sign problem for Fermions (ll)

For Bosons an Intrinsic Sign Problem can be phrased as:
N
“None of the Hamiltonians in this phase of matter are stoquastic”

For Fermions we define an Intrinsic Sign Problem as:

“None of the Hamiltonians in this phase of matter obey any of the known de-
sign principals”




Prevalence of Intrinsic Sign Problems

Phase of matter Hard Sign Problem

Fermi-Liquid No
Ferromagnets/Antiferromagnets No
Superconductors/Superfliuds No
Magnetically assisted No
Superconductivitv
Topological insulators In most cases No
Spin-liquids and bosonic SPTs In many cases No
Quantum Hall effect NO if key = O
Hubbard model and QCD (Yes)
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Some analytical viewpoints

* Doubled Semion lattice gauge theory with
commuting projectors has a sign problem
[Hastings 2015]

« Complexity arguments : QMA > StogMA
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Motivating questions:

Are there phases of matter whose partition function admits
no local probabilistic description?

Are there physically measurable effects which imply
Intrinsic Sign Problems?

Are there phases of matter in which a generic Hamiltonian
instance is computationally hard?

Can we in principal, using available computational
technology, simulate with fair precision the phenomena we
currently see in nature”
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The simulation argument
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A geometric viewpoint on Sign Problems
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Lattice defects and twists as metric
manipulations
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Local Hamiltonians can be placed on
interesting metrics
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Local Hamiltonians can be placed on
interesting metrics
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Local Hamiltonians can be placed on
interesting metrics
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Changing the metric (morally) leaves the
Hamiltonian sign-free

Since de-sign principal and stoquasicity are local,
they often remain valid after the lattice twists
needed for metric changes.

Establishing this requires careful treatment of all the
arbitrariness issues.

From a field-theory perspective, such lattice defects
introduce, apart from the desirable changes to the
metric, various superfluous operators whose
irrelevance needs to be argued for.




A strategy for establishing Intrinsic Sign Problems

Sign-free
Zis Changes to the metric Zie is also
Sign-Free g Sign-Free
TSF

INn various circumstances

Z(WSF) - eiﬂ-anFZ

Contradiction !

“But what o -5 1




Intrinsic Sign Problems in the QHESs
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Quantum Hall effects




Not all QHE have a sign problem !
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Geraedts, Motrunich (2013) 1| .@. |
Bondesan, ZR (2016)
T 1 T
They exhibit : They do not exhibit:
1. QRiantized oyy 1. Thermal Hall conductance
2. U(1)-charge 2. Ability to perform universal
anomaly on quantum computation
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TS F For QHE
G P
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Chiral
Boson
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Can be interpreted as translation of only the right side of the system

(Momentum Polarization) -
* Gravtitional anomaly
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TS F  For QHE
G Px

Anti-
Chiral
Boson

Can be interpreted as translation of only the right side of the system
(Momentum Polarization)

: *
271

* Gravtitional anomaly
G '+ . TN e
Z:ZGXP |:05N$+E(hg—ﬂ) +O(N1 ):| — Ze?‘n"f?

irsa: 20070027 Page 27/37

One can show this cannot be real for all N«




Our results on the Fractional Hall effect

TABLE 1. Examples of intrinsic sign problems based on the criterion ¢*™**/?* ¢ {0,}, in terms of the chiral central charge ¢ and the

topological spins 6, = e*™"+ . The number of spins h. is equal to the dimension of the ground state subspace on the torus. We mark
bosonic/fermionic phases by (B/F). The quantum Hall Laughlin phases corresond to U(1), Chern-Simons theories. The {-wave
superconductor is chiral, e.g p + ip for £ = 1, and spinless. Data for the spinfull case is identical to that of the Chern insulator,
with —¢ odd (even) in place of v, for triplet (singlet) pairing. The modulo 8 ambiguity in the central charge of the Fibonacci anyon
model corresponds to the stacking of a given realization with copies of the Ex K-matrix phase. Data for the three quantum Hall
Pfaffian phases is given at the minimal filling 1/2. The physical filling 5/2 is obtained by stacking with a v = 2 Chern insulator,
and an intrinsic sign problem appears in this case as well.

Phase of matter Parameterization c {ha.} Intrinsic sign problem?
Laughlin (B) [36] Filling 1/q, (g € 2N) 1 {ai’/zq}j_:; In 98.5% of first 10*
Laughlin (F) [36] Filling 1/¢q, (¢€2N—-1) 1 {(a+1/2)* /2q}] ;', In 96.7% of first 10*
Chern insulator (F) [App.B| Chern number v € Z v {v/8} For v ¢ 12Z

¢-wave superconductor (F) [61] Pairing channel £ € 2Z — 1 —£/2 {-£/16} Yes

Kitaev spin liquid (B) [46] Chern number v € 2Z -1 /2 {0,1/2,v/16} Yes

SU (2), Chern-Simons (B) [68] Level k € N 3k/(k+2) {a(a+2)/4(k+ 2)}::[] In 91.6% of first 10*
Ex K-matrix (B) [69] Stack of n € N copies 8n {0} For n ¢ 3N
Fibonacci anyon model (B) [68] 14/5 (mod 8) {0,2/5} Yes

Pfaffian (F) [70] 3/2 {0,1/2,1/4,3/4,1/8,5/8} Yes

PH-Pfaffian (F) [70] 1/2 {0,0,1/2,1/2,1/4,3/4}  Yes

Anti-Pfaffian (F) [70] ~1/2 {0,1/2,1/4,3/4,3/8,7/8} Yes

Q. Golan, A. Smith, Z.R.

Pirsa: 20070027 Page 28/37




Intrinsic Sign Problems in non-chiral TQFTs
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opological Quantum Field Theories

Examples: Toric Code, Doubled Semion Model, String-Net models

Definition I: A field theory which is metric independent
(e.g. Chern-Simons)

Definition II: An associated between

svrtaces @ — VtO{'°|" Spaces
co - boklim % > U“‘hl_d"t‘) n\.q,('h'(ﬂg

Non-Chiral: No gravitational anomaly on boundaries, Admits a commuting

o M
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he T matrix

A TQFT on a torus has several ground states.

The T matrix gives the overlap between pairs of ground states after
a Dehn-twist of the torus.

T | D),
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Sign-Free implementation the T-matrix in a lattice Hamiltonian
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The exchange statistics criterion

Consider Bosons.

Ground state degeneracy and stoquasticity imply all ground states are
positive. ()

The Dehn-twist implementation is also positive. v

The T-matrix on the basis in which the ground-state are positive is element-

wise non-negative. t)
An element-wise non-negative unitary matrix is a permutation matrix.

A permutation matrix has eigenvalues which form full sets of roots of ider:tb

The Spectrum of the T-matrix, which gives the exchange statistics, must

~consist of full sets o‘ roots of identiti.
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The exchange statistics criterion - Examples

Doubled Semion Model Toric-Code

100 0O
1000
: 0100
T= 0i 00 T= 001 0
—|o oo
000 -1
00 01
Intrinsic Sign Problem (Consistent with Hastings) No Intrinsic Sign Problem (Stoguastic Hamiltonians are known)

FQHE

—2mic/24
Taa=bae / |

Intrinsic Sign Problem {Consistent with previous FQHE argument)
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The exchange statistics criterion - Examples

Doubled Semion Model

|

Intrinsic Sign Problem (Consistent with Hastings)
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Intrinsic Sign Problem {Consistent with previous FQHE argument)
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Toric-Code

T:

COo=Oo

No Intrinsic Sign Problem {Stoguastic Hamiltonians are known)
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Kagome Anti-Ferromagnet
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Outlook

* Classifying sign problems - Can all intrinsic sign problems be linked with
quantum geometrical twists” For instance the repulsive Hubbard model??

« Sign-problem detection - Given a ground state, can we numerically infer an
intrinsic sign-problem (at a lower computational cost than required for solving it)?

* Quantum Supremacy - Given we can engineer models in the doubled-semion
phase in the lab, would that be considered as proof for guantum supremacy.

+ Sign oracles - if we had a device which can efficiently sample from the
doubled-semion partition function, can we use it to sample from other TQFT
partition functions.

- Sign Problem severity - Not all sign problems are equally bad, can we say
something about the severity of Intrinsic Sign Problem (Decay of (¢®)r )?

Omri Golan Adam Smith Dmitry Kovrizhin
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