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Abstract: In the first part of the talk | will present how to compute anomalous dimensions of EFT operators using& nbsp;on-shell scattering
amplitudes. The method is used&nbsp;to compute& nbsp;some two loop transitions, which are important to&nbsp;provide a complete
characterisation of the dynamics affecting some& nbsp;low energy precision experiments. In the second part, | show how unitarity, analycity and
locality impose stringent non-trivial constraints& nbsp;to the space of possible EFTSs, invisible at the Lagrangian level by only considering the
symmetries of the IR theory.
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XXth Century particle physics from a XXIst Century perspective:
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Particle Physics is back to the origin, is again the exploration of the unknown.
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EFT operators encode ir
about the heavy dynami
and tells us in which wa
the SM is deformed.
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Evolution of electron EDM constraints

-26 T
o .
@ <
= —
-271 2 .
E 3 {10! &
@ & R —
m a = i~
o8 E B T
g E ;E} Nt
"éb g S é ©
= b4 P e
— - Q
= =291 = > &
g w 10" ==
= ]
- 3]
) 3
-30 E
<
_31 [ _103

2000 2005 2010 2015 2020 2025 2030

Current: ACME Il |d.| < 1.1-107% e cm
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Translation of ACME constraints to particle physics:

d 1 M,
<~ c — A > 3TeV
e~ (1672)2 A2 Ny

Relevant constraints even at two loops.

We want to characterize all effects that enter with

Two loops Chivality flip log enhanced

This is the key to help organize
the contributions

G. Panico, A. Pomarol, MR [18
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G. Panico, A. Pomarol, MR [18

Pirsa: 20070026 Page 8/40



Evolution of electron EDM constraints
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- After some time of promises of improvements with nothing happening, it seems that there will
further progress in a short time scale.

- If there is a positive signal, we'll have confirmation very quickly.

- There are some proposals for a total breakthrough.
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Electron EDM searches are not the only low energy probes to get a boost in the next years,

Muon to electron conversion searches (+photon, +ee, conversion in hadrons) are expected to improv
by orders of magnitude

urely leptonic case: u— ey u—3e Caltech
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Br(u - ey)<6-1071% = A >10TeV, for LD

Similar for the other operators. So two-loop RGE relevant.

Only if there was a way to compute anomalous dimensions easily...
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Part |

SMEFT anomalous dimensions from the S-matrix

Joan Elias Mirg, James Ingoldby, MR [2005.06¢
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Form Factors of specific operators give the response of a given state
once we insert that operator

FO,; — <p17p2:p3ap4|oi|0> e.__g. 5ab(s+t)
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They receive, of course, loop corrections.

Fo, = (p1,p2,p3,p4|0s]0) = 5ab(s—|—t)(

=0, A

- »
8 ’
. .
~ ¢

~
. e
b ’
-
" .
. S
-
. 2
.
v
v

Pirsa: 20070026 Page 13/40



In perturbation theory (and perhaps beyond), a Form Factor is related across both sides
of the cut by the reality condition

F(Sij + 76) = F* (Sij — Zf)

This is generated by a complex rotation of the momenta,

..... v
T — e—i?r " pi‘fi‘i}uF* — p—imD
On the other hand, unitarity implies QPT_
k'S
F = 5ut{a]0]0) = Zout<a‘ﬁ>inin<ﬁ‘o‘0> =
B
So,
CPT . y
Unitarity €HMTDF* - SF* gf:lr?elff\/%’?seg:'
Analyticity

The dilatation operator is proportional to the phase of the S-matrix

see [Caron-Huot, Wilhelm *16] for alternative
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[Caron-Huot, Wil

e~ PR — SF

Dilatation operator related to anomalous dimensions by Convolution of FF with S-matrix:
RG equation:

0 0 O .
DE Nﬂa—ﬂF ~ (yov —vir + B(g )@)F S =1 + ZM

At LO, dependence on beta ignored,

1
(vov — 71r){a|O|0) = 7T<06|J\/l ® 0|0)

For this talk, we focus on elements with no IR divergences

1 {aM® 0,|0)
(o0

Yij
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2 2
Example 1: Self renormalization of OFF = |H‘ F#V
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So, VYFF«FF = 4(ns +1)

1672
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In perturbation theory (and perhaps beyond), a Form Factor is related across both sides
of the cut by the reality condition

F(Sij + 76) = (Sij — ZG)

This is generated by a complex rotation of the momenta,
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2 2
Example 1: Self renormalization of OFF = |H‘ F#V
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Spinor notation for massless momenta: See [Elvang-Huang] fo

"
a.
Pp ab

0
" fmem [ CO83
= Do, = —|Plal(pl; Ip)* = V2E ( .0 2«5@)

The important point is that angle and square brackets carry opposite little group weigh
or helicity.
Example:

= » [13](32) + [14](42)

T (13)[32] T (14)[42)

Frufo D up — Gx(pr)(fs— pa)v(p2)

Phase space integral:

The previous integral was trivial, but in general it is not.
It will be useful to write it as

‘ 1 'TI'/Q 2m d(,D
. — 2 y 1 v
/ [dp][dq] T ]0 cos @ sin 6dd ] 5

N 0 T

The angles parametrize the rotation te base spinors,

(1) = (aies ) ()
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Non-renormalization theorems

This language trivializes the non-renormalization theorems of  [Alonso, Jenkins, M
[Elias Miro, Espinos
[Cheung, Shen]

See also [Bern, Parra-Martine

The spinor language naturally splits the dim-6 operators into 5 categories:

(%, (), 1 and ()]

Operator MFF
O Ly FA,F5,FE, Fy(132537) (12)(23)(31)
Orr LHTHFAFAm™ Frr(1:2;3345) (34)(34)
O  Qo*™T4qHF4 Fur(172-3:47) (14) (42)
Osr,  (Qin)e(Q4d) Fur(17273747) (12)(34)
(@ |H|*QqH Fy(1:233:4;57) (45)
Os |H| F(1,2,3.435:6%) 1
O,  (QT*yQ)(QT*4,Q) Fyr, (1727 304)) (12)[34] i
Ogn  (QT**Q) pHW-"B,,H) Fou(Li253;:4F) (31) [14]
0, (H'D,H)(D"H)'H Fy (1,2,3;43) (13)[13]
0y |H|*(D*H)Y(D,H) F(1:2;3147) (14)[14]

similar to [Henn
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Example 2: 4-fermions

- There are two fundamentally different types (g’“fuf) {(Zmé') = (Lvul2]Blyul4] =2 {
of 4-fermions, with and without net helicit - ;
/ (fu)(ge) = (12)(34)

- We'll compute anomalous dimensions

T 1 1
of the second type due to a U(1): A(f f+f f+) = 92<13>[2‘H (: + E)
- Only two flavour structures will be . ) ’
independent due to Schouten identity: 0= <fu> <q6> I <F’q> <€u> ot <€€> <uq>

f1fa € {bu,eq, be, cu, bq, qu}
v =2 _{fifalMlzy)(fsfazy|Orequl0) Py
fi1f2 A e

St Sex

_ / 404? (Y} y, {ewlzylze)gy) LYY, (eq)[zy](bx)(yu) +)

= /dQ > (VY + Y, Y, + Y. Y, + Y.V, ){fu)(qge) + {lequ)...

2
g
= 1672 (Ye + Ye)(Yy + Yu) (bu)(ge)
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Non-renormalization theorems

One loop structure:
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[Azatov, Contino, Machado, Riva
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Non-renormalization theorems

Two loop structure:

1-loop L R

()3 Ty () 4
= 4.1 2F2 5 F 2 4.2 T 4.3 v
F o) Y @h Y —— Y9’ —+—

|9 Gu0g? 977
k=3l ]
At two loops, RGEs can shorten operator legs by cne, cor avoid helicity selection rules.

The former type are particularly easy to compute with this method!
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Example 3: A 2-loop example, Yukawa to dipole

Two types of diagrams, involving 3-particle cut and 5-point amplitudes:

This will be z2evo so forget it

The entire difficulty of this calculation is to write down the 5-point amplitude in a simple
so that the integral is easily doable. Let’s focus on the pure gauge part:

[23][24] [23][24] )

s~ YO TERea

A(F- +odr™) = (Qf@z
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Example 3: A 2-loop example, Yukawa to dipole

ety 3( .02 (23124] 2 4 \[23](24]
A1) = (@1 Qf%[lﬁ]‘ﬂénm)
integral = s14 / dum(’ﬂ) = (14)(42) - N
J ¥ RallyaIA A
\ dipole FF

with

/2 w/2 w/2 Cg

N = / 2891631(191/ 433_2(;9_2(192/ 259, cp,d03 - = 1
J0 J0 Jo 5y
2

Adding the flavour structure, one gets the result in the literature,

d Cen B _.',r‘{ 3 f,q“.}',r,r + —H;j“_ }f;“; + Ye) C
L NG 4 B s , Ye
dlnp C.w (16m=)=4 % _;_%,LH Yu(Y: + Ye)

from [Pomarol, Panico,
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Example 3:
My brain is not a standard candle, but to get an idea...

The Verdict

- + =
One month+ of struggle, One day to get the amplitude
of sign-chasing, of looking in a nice form.
for factors of two and comparing 30min of writing the rotation g
with collaborators... do the integrals in Mathemati
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Last but not least, an obvious but important aspect of the method is that it is GREEN

*\F'L pr— ‘PI +¢;

Same amplitude appears in several computations, in this case

Pirsa: 20070026 Page 27/40



Part Il

Positivity and the space of EFTs

B. Bellazzini, J. Elias Miro, R. Rattazzi, MR, F. Rivag, to appear....
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We know know that not all IR dynamics can be UV-completed, e.g.

S S n
./41 1-(90(3) — (} § Cn (A_l) must have C'Tl = 0

[A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, R. Ratt

The amplitude and IR dynamics seem fine,

but negative coefficients violate unitarity of the UV theory.

Actually, this is just the tip of the iceberg and the coefficients,
using exactly the same assumptions as the ones used for the result above,
are in fact much more constrained.
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- Analyticity: the (forward) amplitude consist solely on the unitarity cut at s>4m®2, plus the
crossing symmetric one.
- Unitarity: imaginary part of the amplitude related to the total cross section.

- Polynomial boundedness. Froissart bound guarantees M (s)/s*> — 0 for s — oo

M(s) = lim M(s, 1)

t—0

s
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- Analyticity: the (forward) amplitude consist solely on the unitarity cut at s>4m®2, plus the
crossing symmetric one.
- Unitarity: imaginary part of the amplitude related to the total cross section.

- Polynomial boundedness. Froissart bound guarantees M (s)/s*> — 0 for s — oo

M(s) = lim M(s, 1)

t—0

s

EFT A2 UV complefti
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The arcs

- Using the Cauchy theorem on M(S)/SQ”"'B. n > 0, so that the integral at infinity vanishes
and using crossing symmetry to relate the s- and u-channel cuts, we have the relation

iy ! oo y
an(s):/dé M) g/ Ly M) o

- Jn i (8 = 2m2)2ndd T Jeiomz (8 —2m2)20+3

This term is calculable Non-calculable in pri
within the EFT but positive

P |
,//
The extra singularities P The arcs have a characteristic s

give the correct behaviour at infinity which corresponds to the energy
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The arcs

- Using the Cauchy theorem on M(S)/SQ”"'B. n > 0, so that the integral at infinity vanishes
and using crossing symmetry to relate the s- and u-channel cuts, we have the relation

i = / ds M(s') _ 2 / s ImM (s")

n i (8" — 2m?)ns T Jeiomz (8 —2m2)20+3

This term is calculable

Non-cdalculable in pri
within the EFT

but positive

So the arcs are calculable quantities that inherit positivity conditions from the UV

For instance, _/\/[(3) = E CQ“_SQH — an(s) = Cop42
n=>0 N

And we recover the known result of ¢,, > ()

But there is more...
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- More generdlly, we can consider M(S)/P(S) as long as the integral is positive

z/ d,llm\/i( g

0
P(s") =

T Js

One can see that all zeros of the polynomial are within z < |s|. So,

2 ,ImM , ImM(s")
E/b ds ZG’” / ds' 2n+.3 s Zané an (s

n=0

i.e. a positive polynomial is mapped into a linear inequality between arcs.

What is the space of allowed arcs? -« What is the space of positive polynomials?
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Before moving to the general result, let me give you a simple example:

2 [, ImM(s") 52 5
— dST 1—72 :a{)—SCL1>0
T Ji S S

":\'Eifl

i

For obvious reasons, let think of this
polynomial as a derivative D acting on the arcs ap

So the polynomial D, which is positive, implies an inequality between the arcs.

Moreover,
T
2 [ ImM(s") [ s? 5%
- ds’ 5 = 1— = | =an— sganH >0
T Js g S S

Similarly, this is a shift operator S

So the (tree-level) Wilson coefficients must decredase.

i.e., super-soft theories (dominant s™4 etc, behaviours) cannot be UV-completed by unitary th
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Moreover, squaring the previous polynomial leads to a further constraint:

(1——32/5'2)2 — Eﬂigfﬂ

i.e. an arc is always smaller than the average of its neighbours.

> an
Ny

Pictorially,

Size of arc/c_n
A
&

-

n, or
anom
dimen
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Back to the generic result:

With the following change of variables

‘ d:
r=(5/5) du(z)= % Im M(3/v/x + 2m?)

The arcs can be written as
-1
iy T I (x), with du(x) a positive measure
RIS " du(x) th d t
0

So the arcs are d sequence of moments of some positive distribution.

This maps our question directly into the Hausdorff moment problem.
The idea is that any positive function can be written as a sum of Bernstein polynomials:

p(x) > 0 for x € [0, 1] iif p(z) = Z cf@_,_,-ilii(l —z) with e =0

?‘hj
Which is nothing but an arbitrary positive combination of shifts S and derivatives D.
Hausdorff showed that

fa,} is an infinite sequence of moments iif S*D’7a,, > 0

It n was a continuous variable, c(n)ye, c'(n)<o, c*(n)ro, ¢ {n)<o,
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For example,
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_—— Single scalar, a_n=1

/
Some examples of where simple theories lie /
1.0F Two scalars, 1/(s-1) + 1
0.8} Three scalars
0.6
s ] Four scalars
E; , ; :
0.4l gy @@ ] 2 Loop
0.2t ; .
0.0 b e . e IR E
0.0 0.2 0.4 0.6 0.8 1.0

clop

Forward limit of Veneziano amplitude:

2 4 6 ‘ 8
. ™ ™ . 177 gl
A(s) ~ stan(sm/2) ~ s* + —s* 6 S gl gy,
(8) ~ stan(sm/2) ~ 8"+ 758" + 15587 + 5708 + 3e3850°
g
ap —ay =L — 5 ~0.177 apaz — a3 = /720 ~ 0.14
ﬂ2 :
a1 — az = (10 — %) ~ 0.0107 ajas — a3 = 7 /1209600 ~ 0.0079

s
" (168 — 177%) ~ 0.001
Soeg (168 — 172%) = 0.00

s —az =
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Conclusions:

Analyticity and unitarity give us
new ways to compute relevant quantities for interpreting experimental data and
tech us which dynamics may or may not be UV completed.

Thank youl
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