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SPACETIME FLUCTUATIONS IN ADS/
CFT AND EXTENSIONS TO MINKOWSKI

E. Verlinde, KZ 1902.08207 Kathryn M. Zurek
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VACUUM FLUCTUATIONS IN SPACETIME AND INFRARED EFFECTS

» The vacuum energy fluctuates

» These vacuum energy fluctuations induce
metric fluctuations

» Metric fluctuations give rise to length
fluctuations

» This is an infrared eftfect. How big is it?
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Characteristic Strain

> With peak SenSitiVity at 1072610*“’ 1078 10°® 10°* 1072 10° 10% 10° 10°

o = ]./TL Cole, Berry, Moore 1408.0740
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PHYSICAL INTUITION OF SQUARE ROOTS

» Square roots appear in physical contexts

where stochastic (thermal) processes

are important
> Random walk: (JL?) = ¢2N N = % )
» ¢ is the diffusion length
» White noise on length scales larger than ¢ £
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» Gy is the expansion parameter, and quantum effects enter at lf)

» Good reason: effects are naturally at Planckian length scales with
Planckian frequencies, for which no experiment exists

» However, we know there are cases where large-N effects give rise to
enhancements

» And where causal diamonds are involved, there is a natural IR scale:
the size of the causal diamond, L
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BASIC IDEA — SPECIALIZE TO ADS/CFT FOR COMPUTATION

» The vacuum fluctuates

» Energy vanishes integrated over all space
in the vacuum

He = / To T erdv?

(vac| H¢ [vac) = 0

» But the stress tensor itself still has a non-
trivial two point function
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BASIC IDEA — SPECIALIZE TO ADS/CFT FOR COMPUTATION

» The vacuum fluctuates

> Integrated over sub-region, we expect the
“modular Hamiltonian” to fluctuate

K= / T " &%dB°
B

(K?) — (K)* #0

» Calculate size of fluctuations and then
backreaction of metric on these “energy”
fluctuations
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OUTLINE

» Review of arguments from 1902.08207

> Postulate size of energy fluctuations in Minkowski vacuum
based on holographic principle

» Compute resultant length fluctuations

» Go to a theoretically controlled setting: AdS/CFT
» Make use of extensive results available in literature
» Few assumptions

> Calculate same quantities

» Future directions: holography in flat space
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OUR ARGUMENT (3 STEPS)

1. Calculate fluctuations in the energy of the vacuum
A. In AdS/CFT this can be calculated with no assumptions.
B. In Minkowski space, assume area law holds.

2. Calculate metric fluctuation from this vacuum energy
fluctuation

3." Calculate length fluctuations from metric fluctuations
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» Minkowski metric in light cone
coordinates t

ds? = dudv + dy? + hyydu? + hyydv? + . ..

» Bring to form of “topological
black hole”

2

dR
ds” = —f(R)T" + 2 +r(df" +5in*0dg™) Y

» by coordinate transformation

(u—L)(v— L) =4L*f(R), log:j:é:% ;
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» The vacuum state of any QFT, restricted to the diamond, can
be expressed as a thermal density matrix (Casini, Huerta, Myers)

e PE B 02 1
— J— IB(F_E) = — = —_-— 2 = e i
P = 7 =€ F(/B) = ThorShor = 2l3% <AM > 862 (IBF) l%
“Energy” fluctuations are Planckian
2AM [
®(L) = —=& ®~ L
8L L
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NEWTONIAN POTENTIAL SOURCES LENGTH FLUCTUATIONS (3)

» Minkowski metric in light cone
coordinates t

ds? = dudv + dy? + hyydu? + hyydv? + . ..

» Bring to form of “topological
black hole”

2

dR
ds® = — f(R)dT* + FR r*(do® +sin® 0dg”) N

» by coordinate transformation

(u—L)(v— L) =4L*f(R), log:j:é:% ;
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ENERGY FLUCTUATION SOURCES NEWTON POTENTIAL (1+2)

» The vacuum state of any QFT, restricted to the diamond, can
be expressed as a thermal density matrix (Casini, Huerta, Myers)

e PE B 02 1
— J— /B(F_E) = — = —— 2 = e — —
P = 7 =€ F(/B) = Thorshor = 2l3% <AM > 852 (IBF) l%
“Energy” fluctuations are Planckian
2AM [
®(L) = —=& P~ L
8L L
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IN MINKOWSKI VACUUM, COMPUTE ENERGY FLUCTUATION (1)

» Postulate size of energy fluctuations based on holographic
principle A 8212
Shor = 4Gw = 2

» Each d.o.f. has temperature set by size of volume

1
I'= —
2L
> Statistical argument:
1
AM ~ VST =
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SQUARE ROOTS AND POWER COUNTING

> Note that the field theory calculation of energy fluctuations
only involves powers of Newton Constant (Step 1)

» No square roots!

» Square root enters in the transformation from Rindler
coordinates to flat space observable (Step 3)

§L?

D ~ huuhvv 5 F
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SQUARE ROOTS AND POWER COUNTING

Jaliiil . |
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» Metric fluctuation sources length
fluctuation t

(u—L)(v— L) = 4L f(R)
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AdS/CFT (K?) — (K)” 40

Where microscopics are under control
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» d+1 dimensional A@S

dz? + dz? — dz?
72

ds®> = L?

» Finite spherical region on boundary B

R*— 2 — 22 + 23 > 2R|z0|

» Corresponds to causal diamond in
bulk anchored to B

K= / e dB”
B
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BOUNDARY THEORY RESTRICTED TO CAUSAL DIAMOND

» The vacuum state of any QFT,
restricted to the diamond, can be
expressed as a thermal density
martrix

o= trHE( lvac) (vac] )

Pirsa: 20070024 Page 22/49



BULK THEORY RESTRICTED TO CAUSAL DIAMOND

1

ds;— - (i = 1) di* 4+ (T—Z — 1>_ dr? + r2d¥>
- L2 L2 d—1

» By AdS/CFT correspondence, thermal

bath of CFT is related to the appropriate
black hole in the bulk
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BOUNDARY THEORY RESTRICTED TO CAUSAL DIAMOND

» The vacuum state of any QFT,
restricted to the diamond, can be
expressed as a thermal density
matrix

o= trHE( lvac) (vac] )
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FLUCTUATIONS IN “MODULAR ENERGY" OF CFT (1)

» Thermal density matrix of CFT —> Free Energy

.,FB = —; log tr (e‘ﬁK)

» In principle, allows to calculate expectation values
82
(K% — (K =~ (3F)

» In CFT, done by E. Perlmutter

» We used holographic entropy to calculate this quantity
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CALCULATING THE BULK MODULAR HAMILTONIAN (1)

» According to AdS/CFT dictionary, entanglement entropy of

boundary is dual to horizon entropy of topological black
hole in the bulk

» Use “replica trick” — replace density matrix with n copies
P P y p

n —nK 1

S tr(a”) - i In = 2w ln
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CALCULATING THE BULK MODULAR HAMILTONIAN (1)

» According to AdS/CFT dictionary, entanglement entropy of

boundary is dual to horizon entropy of topological black
hole in the bulk

» Use “replica trick” — replace density matrix with n copies

(K) = % (nFy)

n=1

n=1

» Evaluate free energies holographically
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BULK THEORY RESTRICTED TO CAUSAL DIAMOND

1

ds® = — (i = 1) dt* + (T—Z — 1>_ dr? + r2d¥>
- L2 L2 d—1

» By AdS/CFT correspondence, thermal

bath of CFT is related to the appropriate
black hole in the bulk
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FLUCTUATIONS IN “MODULAR ENERGY" OF CFT (1)

» Thermal density matrix of CFT —> Free Energy

Fp = —; log tr (e_ﬁK)

» In principle, allows to calculate expectation values
82
(K% — (K =~ (3F)

» In CFT, done by E. Perlmutter

» We used holographic entropy to calculate this quantity
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» According to AdS/CFT dictionary, entanglement entropy of

boundary is dual to horizon entropy of topological black
hole in the bulk

» Use “replica trick” — replace density matrix with n copies

(K) = g (o7

n=1

n=1

» Evaluate free energies holographically
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CALCULATING THE BULK MODULAR HAMILTONIAN (1)

» According to AdS/CFT dictionary, entanglement entropy of

boundary is dual to horizon entropy of topological black
hole in the bulk

» Evaluate holographically utilizing RT formula

Hung, "Myers, Smolkin, Yale Xi Dong

F(T) = E-TS

nFn = écn) {—T(:C)S(:c) "y /1 mnT(;u)dS(a:)]
510 = A2
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BULK MODULAR HAMILTONIAN (1)

» Main result:

e - 45

» How does the bulk metric react?
ds* = —f(r)dt* + ar” + r?dx3
| 7 =
742 Ld—2
fr)= ﬁ_l_Qq)Td—z
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CALCULATING THE BULK MODULAR HAMILTONIAN (1)

» According to AdS/CFT dictionary, entanglement entropy of

boundary is dual to horizon entropy of topological black
hole in the bulk

» Use “replica trick” — replace density matrix with n copies

(K) = g (o7

n=1

(AK?y = - & (nF)

L3

n=1

» Evaluate free energies holographically

Pirsa: 20070024 Page 33/49



BULK MODULAR HAMILTONIAN (1)

» Main result:

e - 45

» How does the bulk metric react?
ds* = —f(r)dt* + ar” + r?dX2
f(r) -
742 Ld—2
fr)= ﬁ—l—QCI)Td_Q
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BULK MODULAR HAMILTONIAN — DOES IT GRAVITATE?

» Modular energy of boundary CFT restricted
to diamond is related to a minimal surface in
bulk — Ryu-Takayanagi:

_ o _ AR

) =5 =g

» Trivially implies

()
=22 1Ak
e Rl

» According to JLMS, AK is the bulk modular
Hamiltonian — it gravitates!

AK = / T dc”
C
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BULK MODULAR HAMILTONIAN (1)

» Main result:

e - 45

» How does the bulk metric react?
ds* = —f(r)dt* + ar” + r2dX2
f(r) -t
742 Ld—2
fr)= ﬁ_l_Q(DTd—Q
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GRAVITATIONAL POTENTIAL AND MASS (2)

» Fluctuations in the modular Hamiltonian
behave like a mass — they gravitate!

1
M= (K (K )
2m L < >
» Show utilizing first law of black hole
thermodynamics
dM =1TdS

» The vacuum fluctuation induces a non-zero

gravitational potential
StGM

b —
(d—1)V,_ L2
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COMMENTS ON REGULARIZATION

» RT surface is formally infinite and must be regularized

8TGM

d —
(d—1)V;_  L42

AX) =LV,

Xo
Va—1 = Qa9 / dx sinh?~? X
0
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FINAL RESULT FOR METRIC FLUCTUATION AND MODULAR HAMILTONIAN (2)

| _' AK 4G
o (d- 1)A(E)

i gt et

» It says that the modular Hamiltonian in the bulk sources
metric fluctuations

o2 _(AK2> 1 4G
@) (A(Z)> (A1) A(%)
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COMMENTS ON REGULARIZATION

» RT surface is formally infinite and must be regularized

8TGM

d —
(d—1)V,_ L4

AX) =L,

Xc
Va—1 = Qa9 / dx sinh?~? X
0
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FLUCTUATIONS IN LIGHT ARRIVAL TIME (3)

» In unperturbed metric, light trajectory at:
;=0 zg=—-R+z2. z3=R—z
» Turn on gravitational potential in the bulk

and compute change in size of causal
diamond

(R—zo)2 — 22 —af\ ((R+mg)* — 2% —2f\ 2% )y
2Rz 2Rz B '

2 .2
RszZ — I=/50

» Zreflection — R (\/1 4+ 2P + \/2(]:)
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» [t says that the modular Hamiltonian in the bulk sources
metric fluctuations

o (AK?) /4G \* 1 4G
) = =2 (A@)) T @-1EAR)
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RANDALL-SUNDRUM Il SET-UP

» Boundary pulled into bulk, inducing gravity on the brane

AT?, 2 4G
T2, d—1\ AX)

AT?, N\/ Goutk  d=4 | Gbdy |
& La—1eld=2)xc I |

Agrees with Minkowski result!
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_ AK 4G
- (d- 1)A(E)

ai =

» It says that the modular Hamiltonian in the bulk sources
metric fluctuations

o2 _(AK2> 1 4G
) (A(E)) - (d—-1)2 A(%)

Pirsa: 20070024 Page 44/49



RANDALL-SUNDRUM Il SET-UP

» Boundary pulled into bulk, inducing gravity on the brane

AT?, 2 4G
T2, d—1\ AX)

AT?, N\/ Goulk d=4 Gogy |
{ T La—1eld=2)x. d s |

Agrees with Minkowski result!
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RECALL OUTLINE OF ARGUMENT

Cattllate fluctuations™
" energy of the vacuum

A. In AdS/CFT this can be

calculate.d with no ) , A (E)

assumptions. <K > — <K> — 10
\\B. In Minkowski space, opé ' .

| ¢ made. Can this result be derived in EFT?

2. Calculate metric response t0  Yes. Well-known that entanglement entropy

this vacuum energy fluctuation in field theories scales with area
3. Calculate length fluctuations Area and Entropy, Srednicki *93

from metric fluctuations and Callan and Wilczek ‘94

turn into observable Cooperman and Luty "14

Gravitons, Benedetti, Casini ‘19
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RECALL OUTLINE OF ARGUMENT

1. Calculate fluctuations in the Flat Space
energy of the vacuum
A. In AdS/CFT this can be 6L* 5@(L)=5U(L) _ 96
calculated with no L? L2
assumptions.
AdS case

B. In Minkowski space, one
assumption must be made.

(R=of =2 =2\ ((Rtaof =2 =a?\ _
2Rz o

2. Calculate metric response to ( 2Rz
this vacuum energy fluctuation

We would like to have an
independent formulation
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SUMMARY

» Thinking about observational consequences of quantum gravity

» Led to asking new questions about well-studied system in
AdS/CFT

» Still open questions to address — RS braneworld, EFT
formulation, OTOCs

» This is fundamentally about the nature of the vacuum in a
quantum theory of gravity

» Implications for cosmology and astrophysics

» [ think this deserves attention
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FLUCTUATIONS IN “MODULAR ENERGY" OF CFT (1)

» Thermal density matrix of CFT —> Free Energy

Fp = —; log tr (e‘ﬁK)

> In principle, allows to calculate expectation values
\ 0
(K% — (K =~ (3F)

» In CFT, done by E. Perlmutter

» We used holographic entropy to calculate this quantity
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