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Introduction Sprinkling in Causal Set Theory Local Structures to Discretize Field Propagators

(1o} Q0000 C0O00000
What is Causal Set Theory?

@ It is a framework for quantum gravity, see introductions by Henson
[Hen09] or Sorkin [Sorl1].

@ Continuum spacetime manifold is replaced by a locally finite partial
ordered set (., <), i.e. it fulfills the axioms

transitivity: B RZ =T
acyclicity (anti-symmetry): [ == 5]s 5=
local finiteness:  |{z € Z|r <z S y}| < 0.

@ The causal interval or Alexandrov subset of two causally related
events is denoted by

flzm ={zef a2z =y}-

@ We write x < y if and only if x <y and x # .

@ An event y is linked to =, x <x y (or  <xy) if and only if
I(x,y) = {z,y} and = # y.

Pirsa: 20070017 Page 3/32



Introduction Sprinkling in Causal Set Theory Local Structures to Discretize Field Propagators
oe QOO00 C0O00000
What is Sprinkling?

Sprinkling is the Poisson process of obtaining a sprinkled causal set
(causet) from a spacetime:

@ Let (M. g) be a smooth spacetime manifold with metric g.

@ Select a locally finite set called sprinkle of spacetime points
® S C M by a Poisson process.

loc. finite

© Restrict the causal relation from the spacetime to the sprinkle
vy ared (y)

We will derive the corresponding probability measure in the following.
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Sprinkling Configuration Spaces

@ Let U € L be a subset of M in the set L of open, pre-compact
subsets.

@ The configuration space of sprinkles on the manifold M is

Q:={SCM|YUeL:|SNU| < oo}.
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Sprinkling Configuration Spaces

@ For the construction [AKR98], consider n-tuples of non-identical frreistohi 2

events in U:

(/2—;; =l B s el | Ve, 4 2 [l cay =gy 4 =g}
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Sprinkling Configuration Spaces

@ For the construction [AKR98], consider n-tuples of non-identical
events in U:

(/2—;; =l @y s el | Ve, g 2 [l say = @ i =g}
5

Pirsa: 20070017 Page 8/32



Introduction Sprinkling in Causal Set Theory Local Structures to Discretize Field Propagators
(ele] [e] lelele C0O00000

Sprinkling Configuration Spaces

@ For the construction [AKR98], consider n-tuples of non-identical
events in U:

(/2—;; =Sl B g g b e | W0, 4 € [1a] vay = T; 1= 7t
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Sprinkling Configuration Spaces

@ Every n-tuple with the same events x; corresponds to the same
sprinkling:

EU,??» éjQU.n —% Q(.»‘T,n- (;I."l._ L2, ,Tn) {‘1’11‘-;1:2’ by ‘-;1:”}'
Oy =0 E U | |8 =mi}e
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Sprinkling Configuration Spaces

@ Take the union over all cardinalities to get the config. space Q.

@ The intensity measure for every open subset of M, derived from its
volume and the sprinkling density parameter p

MU) = p/ Vgl d%z
.U
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Poisson Measure

@ Poisson (probability) measure on U [AKR98] assigns a probability

=1 ian oo
#L‘T(B) =5 AU) Z m)\@) O ZU,{? (Bn)
n=0 2

for any measureable subset B = (B,,),en, such that B,, € B(Qu.n).
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Poisson Measure

@ Poisson (probability) measure on U [AKR98] assigns a probability

J . 1 n —]
#L‘T(B) = e_)\({/ ) Z m)\@) O ZU,&? (Bn)
n=0 "

for any measureable subset B = (B,,),en, such that B,, € B(Qu.n).

@ There exists a unique Poisson measure on the entire manifold M.

3 4 2 =
° e 209
0:’ ooo -] °° 07* o 70 ?
o @ e : % ’g b E (_20 -
o ° TS E °
o o e an - = XN 1
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Past (and Future) Layers

@ Classical and quantum fields on causal sets are described by
discretized counterparts to the eom. on a continuum manifold.

@ Most approaches to discretization are based on past k-layers

[Sor09, ASS14],

O

Li(2):={y € € | k= |I(y.a)| - 1}.
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Paths and Rank

@ These discretizations need the spacetime dimension as an input, but
in general the spacetime dimension of a given causal set is an
emergent (local) property and not pre-defined.

@ A more recently proposed discretization method [DHFRW20] has
the potential to be independent of the dimension, but needs a
supplementary structure to a causal set called a preferred past as
defined in the following.

@ We define a path from a causet event = € € to an event in its
future y > = as the set of events &2 that forms the linked chain

T SFX Sk Tg <F 7 E Ty 0~k 7,

@ We denote the set of all paths from = to y by paths(x,y).

@ The length (number of links) of the shortest path is called the rank

~ min || -1 ==y,
lk(yi) — Pepaths(z,y)

| o otherwise.
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Past (and Future) Rank

@ The rank k past of an event = € & is the set
R (z) = {y € €| k(z,y) = k}.

@ A preferred past structure is a map A~ : € \ C5; — % such that
A~ (z) € Ry (z) forall z € €\ C5 .
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Diamonds

@ For an event = and one of its rank 2 past events y, we call the
Alexandrov set [(y,r) a k-diamond if its size is

k= [I(y,z) \ {z,y}-

@ The number of internal events for a given k-diamond [(y, x) is

itn(z,y) =k —|{z € I{y,x) | y <% z <x x}|.

1-diamond
0 internal events
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Diamonds

@ For an event x and one of its rank 2 past events y, we call the
Alexandrov set [(y,x) a k-diamond if its size is

k= 1(y,x)\ {z. y}l.
@ The number of internal events for a given k-diamond I(y, x) is

itn(z,y) =k —|{z € I{y,x) | y <x z <x x}|.

2-diamond
0 internal events
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Diamonds

@ For an event x and one of its rank 2 past events y, we call the
Alexandrov set [(y,x) a k-diamond if its size is

k= 1(y,x)\ {z. y}l.
@ The number of internal events for a given k-diamond I(y, x) is

itn(z,y) =k —|{z € I{y,x) | y <x z <x x}|.

\/

4-diamond
3 internal events
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Diamonds

@ For an event = and one of its rank 2 past events y, we call the
Alexandrov set [(y,x) a k-diamond if its size is

k= 1(y,z) \ {z, y}l.
@ The number of internal events for a given k-diamond I(y, x) is

itn(z,y) ==k —|{z € I{y,x) | y <*x z <x x}|.

\

" ]

4-diamond
3 internal events
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What Past to Prefer

@ In order to find the rank 2 past events to prefer, we numerically

0:

investigated 6 criteria and compared their distributions of the
number of rank 2 past events and their proper time separation.

. largest pure diamonds,
- diamonds with the least internal events of the diamonds with the

most rank 2 paths,

- smallest diamonds,
- diamonds with the most internal events of the diamonds with the

most rank 2 paths,

consider all diamonds with the smallest number i of internal events
of those diamonds with the greatest number p,,,... of rank 2 paths
(as in criterion 2); furthermore, include diamonds that have

(Prmax — j) rank 2 paths and up to (i — j) internal events (or are
pure), Vj € [1, pmax — 1]. Split this set of diamonds and sort
increasingly by the number of rank 2 paths, then count the
diamonds in each subset. Select the first subset that has only one
diamond so that it is a unique element - or choose the largest
diamonds of the selection.

largest diamonds.
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Diamonds
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What Past to Prefer

@ In order to find the rank 2 past events to prefer, we numerically

0:

investigated 6 criteria and compared their distributions of the
number of rank 2 past events and their proper time separation.

. largest pure diamonds,
- diamonds with the least internal events of the diamonds with the

most rank 2 paths,

- smallest diamonds,
- diamonds with the most internal events of the diamonds with the

most rank 2 paths,

consider all diamonds with the smallest number i of internal events
of those diamonds with the greatest number p,,,.. of rank 2 paths
(as in criterion 2); furthermore, include diamonds that have

(Prmax — j) rank 2 paths and up to (i — j) internal events (or are
pure), Vj € [1, pmax — 1]. Split this set of diamonds and sort
increasingly by the number of rank 2 paths, then count the
diamonds in each subset. Select the first subset that has only one
diamond so that it is a unique element - or choose the largest
diamonds of the selection.

largest diamonds.

[ Christoph Min ﬁ"
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What Past to Prefer

@ Probability that the criterion selects a unique event from the rank 2
past (for 10,000 causet ensembles in Alexandrov subsets of 1 + 1, 1
+ 2 and 1 + 3 dimensional Minkowski spacetime)

(n) = 6000

=
2 70 =
~ s .
Py e 3 § T criterion
= 12
= - H 1
S 40 =
5 30 L
=

spacetime dimension
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What Past to Prefer

@ Proper time separation between the past and future event of the
diamond, for flat spacetime dimension 1 + 1, ,
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on o en
1 1
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—
1

(n) = 6000
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1
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/"'-..____’
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[
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What Past to Prefer

@ Proper time separation between the past and future event of the
diamond, for flat spacetime dimension , 1+ 3
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What Past to Prefer

@ Proper time separation between the past and future event of the
diamond, for flat spacetime dimension 1+ 2,
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What Past to Prefer

@ Proper time separation between the past and future event of the
diamond, for flat spacetime dimension , 1+ 3
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