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Abstract: Analogue gravity summarises an effort to mimic physical processes that occur in the interplay between general relativity and field theory
in a controlled laboratory environment. The aim is to provide insights in phenomena that would otherwise elude observation: when gravitational
interactions are strong, when quantum effects are important, and/or on length scales that stretch far beyond the observable Universe. The most
promising analogue gravity systems up-to-date are fluids, superfluids, superconducting circuits, ultra-cold atoms and optical systems. While
deepening our understanding of the laboratory systems at hand, the long term vision of analogue gravity studies is to advance fundamental physics
through interdisciplinary research, by establishing and nurturing a new culture of collaboration between the various communities involved. | will
discuss recent efforts to explore the quantum origin of the Universe, accelerated observer radiation, and rotating black hole physicsin the laboratory.
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1st order phase transition in
quantum field theory
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Origin of the Universe through vacuum decay? I | Nottingham
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. Particle physics-inspired cosmological theories exhibit false vacuum decay via bubble nucleation
. Relativistic first-order phase transition: non-perturbative, non-linear, non-equilibrium process

. Understanding dynamics could shed light on origin of Universe
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The FVD in the laboratory? I Notingham

Fialko proposal: “emulate” full dynamics in condensed-matter system!

Fialko, Sidorov, Drummond, Brand, J.Phys.B50 (2017)

2-component coupled Bose-Einstein Condensates/BECs

ultra-cold dilute gas of N bosons, in two-single particle states
e.g. atoms in two different hyperfine states or double-well potential
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« Investigated effects that impact validity of analogue if not controlled,
feeding back into experimental design.

« Linear stability analysis, confirmed by stochastic lattice simulations.

 Further experimental effects need to be quantified and mitigated.

Braden, Johnson, Peiris, Pontzen, Weinfurtner, JHEP (2018), JHEP (2019)
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Braden, Johnson, Peiris, Pontzen, Weinfurtner, JHEP (2019)
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¢ Compare with “quantum tunnelling” instanton predictions

*  Surprise! Rates are very similar (given semiclassical stochastic lattice sims only capture
classical decay paths)

¢ New “real time” semiclassical interpretation of false vacuum decay?

*  Technique enables computation of observables inaccessible to instanton formalism

Braden, Johnson, Peiris, Pontzen, Weinfurtner, Phys. Rev. Lett. (2019)
Hertzberg and Yamada (2019), Blanco-Pillado, Deng, Vilenkin (2019)
See also early work on stochastic approach to tunnelling e.g. Linde (1991)
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Pathways to experiment Nottingham

Ultra-cold atoms

, in box trap

*  Experimental implementation possible due to *

recent developments in quantum technology 01
community Optical box .

mm

Zoran Hadzibabic, Science 347 (2015)
Zoran Hadzibabic, Nature 563 (2018)
Zoran Hadzibabic, Science 366 (2019)
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Observer dependence
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Observer dependence of quantum vacuum I Notingham

kpTy = 2
BV 2nc

. A uniformly linearly accelerated observer sees fluctuations of the Minkowski vacuum as a thermal
bath with a characteristic temperature [W. G. Unruh, Phys. Rev. D 14, 870 (1976)]

. Unruh-DeWitt detector: 2-level quantum system with an energy gap E, on a smooth time-like
trajectory x(t), parametrised by proper time 7; and for example the following interaction

Hamiltonian: Hy,y = a - x(7) - u(t) - ¢(7)

. The Unruh radiation for an observer with the acceleration a is given by
T = 2,5 * 10"~ (-20) Kelvin/(m/s”2), and hence the effect seems far too small to be detectable.

. As a consequence many of the assumptions that go into gft in ¢s cannot be tested!
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model for particle detectors in a relativistic setting Nottingham

Problems to overcome:

. There is no analogue of a relativistic proper time.
Our solution: circular Unruh effect; proper and coordinate time are related by a time-independent
gamma factor [Bell and Leinaas, Nucl. Phys. B 212, 131 (1983)].

. Physical system needed, acting as an effective Unruh-DeWitt detector.
Our solution: replace 2-level quantum system with an interferometric setup,
the laser/or any continuous probing field facilitates a suitable particle detector.

. The Unruh radiation for an observer with the acceleration a is given by
T = 2,5 *10"(-20) Kelvin/(m/s”2), and hence the effect seems far too small to be detectable.
Solution provided naturally: The effective speed of light is lowered by many order (here 11) of
magnitude, analogue Unruh effect becomes experimentally feasible!

. An experimental implementation will allow us to test out mathematical models!

Pirsa: 20070009 Page 14/33



Interferometric Unruh detectors for Bose-Einstein condensates

Basic idea: Quantum fluctuations follow an effective relativistic field theory; coupled laser field acts as
an effective Unruh-DeWitt detector: BEC density fluctuation converted to laser phase fluctuation
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) Circular motion with constant radial acceleration approximately

thermal spectrum in 2+1 dimensions and in our system agpogue =

O %

Pirsa: 20070009 Page 16/33



The University of

Mapping: ultra-cold atoms to gravitational system Nottingham

L= EBEC + £em .3 £int

* Laser beam passing through the BEC atoms o I i
will react by forming dipoles according to 2

their polarizabilities a. i 1 /da: (%952(??._ ) m))z)
Linearization 2, cs

« If laser is sufficiently detuned from atomic : . | "
—¢ [ dad Y(t, z)o(t, x)d(x — X (t))d(z
resonance, a real and BEC-light interaction g _/( et APl (£))o(2)

iven by semiclassical model macroscopic
electrodynamics.

The field theory: a two-dimensional
2 2 scalar field ¢(t, x), with x = (x, y), and
Eint — — i (at A) ‘(I)‘ a one-dimensional 2 probing field P(t, z)

Pirsa: 20070009 Page 17/33



The University of

Nottingham

1orempory £

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
I
(

10-3 102 10~ 107
E

. Detectors response can be extracted from the power spectral density of the phase fluctuations in
the laser (unequal time phase-phase correlation functions)

. Signal to noise (shot-noise) calculation for experimentally feasible parameters/setups promising.

. Possibility to test some of the assumptions made to derive the Unruh effect, and beyond...
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Black hole ringdown
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. Rotating black hole geometries: apparent/event horizon, ergo-surfaces and light-rings/circular orbits
> Several fundamental physics processes to be explored: Hawking radiation, superradiance, ringdown, ...
. Possibility to explore quantum effects beyond Hawking radiation
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Rotating black holes
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Perturbed black-holes emit characteristic waves, whose frequencies are
independent of initial perturbation.

Characteristic modes are probes of the gravitational field surrounding a black hole

Contribution of quantum effects to black hole dynamics remains open question.
Goal is to look for distinctive quantum fingerprints of black hole relaxation process
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Vortex flows exhibit analogue rotating black hole geometries
apparent horizons (V7 = Crippies ), ergo-surfaces ( Vg + V7 2 Clippies )
and light-rings/circular orbits

Surface waves (i.e. gravity waves) on shallow water flows: ¢? = gh
Hawking radiation, super-radiance, light-bending, and ring-down

-

n\ [ —gh+ v|f|7=h — B
Iuv = | — R ‘
g — V) I2x2

z=h

z=h

Possibility operate simulator in regimes where quantum physics matter
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Black hole laborato Nottingham
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bropagation around a hydrodynamic rotating black hole ' | Nottingham
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A path on an analogue curved spacetime geomet ) g

pattern < geodesics (generalisation of a straight line in curved spacetimes)

J. Fluid Mech. 857 (2018) 291-311

Pirsa: 20070009 Page 25/33



[ e I
D?C) — i(gV — ’}--VB) tanh(—ihoV)o + QZ/VQDTQ — ()

Ray tracing methods:

* gradient expansion valid if the background flow changes over
a scale significantly larger than the wavelength;

* Leading order we obtain Hamiltonian for our system

* Hamiltonian equations give characteristics

1 o 1 __
H=—2w-v-k’+F(k)
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Quasinormal modes 1n the analogue gravity system Nottingham
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Ringdown modes
Real part = circular orbits
Imaginary part 2 open boundaries
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. Light-ring mode calculations extended to higher-spatial derivative field theories agree with experiment;
We observer that light-ring modes do not seem to depend on boundary conditions [further tests needed]
[Theo Torres, Sa ‘

ke Weinfurtner, Phys. Rev. Lett. 125, 011301 (2020)]

m Patrick, Mauricio Richartz, Sil

. Endpoints of no-equilibrium process, but light-ring modes persistent in non-equilibrium situation
[work in progress]

. Effective field theory for improved modelling predicts quasi-bound states
[ Patrick, Coutant, Richartz, SW, Phys. Rev. Lett. 121, 061101 (2018)]
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Pathways to quantum black hole ringdown Nottingham

Only assumption: a quantum black hole exhibits quantised angular momentum

Classical angular momentum Quantised angular momentum

- . g Quantised angular momentum
Classical surface waves Classical relativistic ripplons

Quantum relativistic ripplons

Quantum spacetime

Classical spacetime Quantum spacetime SRS
Quantum relativistic fields

Classical relativistic fields Classical relativistic fields
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“Growth comes through analogy; through
seeing how things connect, rather than only seeing

Gravity simulators
Silke Weinfurtner

how,they might be different.” Albert Einstein
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External partners

* J. Braden (CA)

* M. Johnson (CA)

* J. Schmiedmayer (AU)
* R. Schuetzhold (DE)

* W.G. Unruh (CA)

Science & Technology
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Cosmology &
black holes

* Ruth Gregory

* Jorma Louko

* Jan Moss

* Hiranya Peiris

* Andrew Pontzen

(PI, Nottingham)

EPSRC

oring and Physical Sciences
esearch Council

Ultracold atoms

* Thomas Billam

* Zoran Hadzibabic
Superfluids & optomechanics
* Carlo Barenghi

* John Owers-Bradley
* Xavier Rojas

* Pierre Verlot
Quantum circuits

* Gregoire Ithier
Quantum optics

* Friedrich Koenig
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. Light-ring mode calculations extended to higher-spatial derivative field theories agree with experiment;
We observer that light-ring modes do not seem to depend on boundary conditions [further tests needed]

[Theo Torres, Sam Patrick, Mauricio Richartz, Silke Weinfurtner, Phys. Rev. Lett. 125, 011301 (2020)]

. Endpoints of no-equilibrium process, but light-ring modes persistent in non-equilibrium situation
[work in progress]

. Effective field theory for improved modelling predicts quasi-bound states
[Patrick, Coutant, Richartz, SW, Phys. Rev. Lett. 121, 061101 (2018)]

Pirsa: 20070009 Page 33/33



