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Abstract: It has taken severa decades of exploring statistical models of quantum gravity (aka nonperturbative gravitational path integrals) to
understand how diffeomorphism-invariance, unitarity and the presence of a causal structure can be simultaneously accounted for in alattice gravity
framework. Causal Dynamical Triangulations (CDT) incorporates all of these features and provides a toolbox for extracting quantitative results from
a first-principles quantum formulation, with very few free parameters. Recently, we have introduced the "quantum Ricci curvature”, an observable
that --somewhat remarkably-- remains meaningful in a maximally nonclassical, Planckian regime. Measuring this curvature in fully-fledged 4D
guantum gravity, we have discovered exciting evidence that the quantum universe dynamically generated in CDT is compatible with a constantly
curved de Sitter space.
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Preview

The context of my talk is the search for quantum gravity as a
nonperturbative, diffeomorphism-invariant quantum field theory of
dynamical geometry in four spacetime dimensions, with a positive
cosmological constant.

The key take-home messages today will be

1. we have (finally) understood how to correctly put gravity on a

lattice, without destroying diffeomorphism invariance

2. progress in quantum gravity will be achieved by studying
observables; the new kid on the block: quantum Ricci curvature

3. new result (combining 1. and 2.): the geometry of the emergent
guantum universe near the Planck scale is compatible with a
constantly curved de Sitter space

(N. Klitgaard and RL, arXiv:2006.06263)
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Life in the Century of Gravity

e urgent: complete our guantum gravity theories to make reliable
predictions, minimizing free parameters and ad hoc assumptions

* my route: tackle quantum gravity and geometry directly in a non-
perturbative, Planckian regime (no appeal to duality/dictionaries)

e the beauty of classical GR:
“theory of spacetime”, captured
by its curvature properties 3

e given the central role of curvature
ClaSSica”V, is it also true that (©User:Johnstone, Wikipedia) (©R. Hurt/Caltech-JPL/EPA)

nonperturb. guantum gravity = theory of quantum curvature?

e So far, this proposition has remained largely unexplored. We have
set up a new line of research into defining and measuring quantum
Ricci curvature in quantum gravity, with intriguing results.
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The setting

e following the extremely successful example of QCD, we explore the
nonperturbative regime quantitatively by “lattice quantum gravity”

e |attice gauge field configurations a la Wilson (PRD 10 (1974) 2445)
are replaced by piecewise flat geometries (triangulations) a la
Regge (NUOVO C|m, 19 (1961) 558) triangulated model of quantum space
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e modern implementation: Causal Dynamical Triangulations (CDT),
a nonperturbative, background-independent, manifestly diffeo- ¥
morphism-invariant path integral, regularized on dynamical lattices

e N.B.: nontrivial scaling limit needed, no “fundamental discreteness”
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Putting (quantum) gravity on a lattice ...

® .. presents some extra challenges, compared to non-abelian GFT

e early work: lattice versions of various first-order formulations of GR
(vierbein e, + spin connection w,”) (Smolin (1979), Das, Kaku & Town-
send (1979), Mannion & Taylor (1981), Kaku (1983), Tomboulis (1984),
Caracciolo & Pelissetto (1984), Caselle, D’Adda & Magnea (1987), ...)

e Monte Carlo simulations never found any interesting phase structure

e issues: measure (non-compact gauge groups)? status of compactified/
Euclideanized gravity? reflection positivity? metricity condition?
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Putting (quantum) gravity on a lattice ...

® ... presents some extra challenges, compared to non-abelian GFT

e early work: lattice versions of various first-order formulations of GR
(vierbein e, + spin connection w,”) (Smolin (1979), Das, Kaku & Town-
send (1979), Mannion & Taylor (1981), Kaku (1983), Tomboulis (1984),
Caracciolo & Pelissetto (1984), Caselle, D’Adda & Magnea (1987), ...)

e Monte Carlo simulations never found any interesting phase structure

e issues: measure (non-compact gauge groups)? status of compactified/
Euclideanized gravity? reflection positivity? metricity condition?

e ..and afew m Eﬂ in the room: 1

- what happened to diffeomorphism invariance? it’s badly broken!

- unlike the YM action, the Einstein action in unbounded below; this
is the potential killer of any 4D Euclidean gravitational path integral!
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Crucial: lattice QG without diffeomorphisms

Strategy: approximate curved spacetimes by simplicial manifolds,
following the profound, but underappreciated idea of 2.
“General Relativity without Coordinates” (Regge, 1961). 8
e ‘piecewise flat’ gluings of 4D triangular building blocks ;
(four-simplices) describe intrinsically curved spacetimes e

e Geometry is specified uniquely by the edge lengths € of the sim-
plices and how they are ‘glued’ together. No coordinates are needed.

e The full power of this idea is unleashed in the quantum theory,
using a (C)DT path integral over dynamical, equilateral “lattices”
(€ = a up to global time vs. space scaling, for a UV cut-off a).

5

e The CDT path integral has no

4? coordinate redundancies. The MC
€

>4
—_— |‘ simulations are relabeling invariant.

Gluing five equilateral triangles around a vertex generates a
surface with Gaussian curvature (deficit angle €) at the vertex.
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Observables are key

Regardless of microscopic degrees of freedom and dynamical principle
governing QG at the Planck scale, observables are needed to

e understand the gauge-invariant content of a given candidate theory,
e compare to other models, before developing genuine phenomenology,
e establish the existence of a classical limit consistent with GR.

Classical gravitational observables are diffeomorphism-invariant and
usually nonlocal quantities, unlike in YM.
For example, guv(x) and R(x) are not

observables while d*z./g R(z) is. M
M

Nonperturbative QG and “quantum spacetime” are unlikely to be
described by smooth metric fields guv(x), but there ought to be notions
of distance and volume which can be used to construct (pre-geometric)
quantum observables O with suitable invariance properties.
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Implementation is another matter

(0) =~ / Dg Olgle=5""1 72

The longstanding problem of nonperturbative quantum gravity was
that we had no idea what observables © to calculate and how.

This is no longer true, thanks to a significant body of results on
“dynamical triangulations (DT)” since the mid-1980s. One assembles
curved manifolds from identical flat building

blocks and investigates their ensemble

behaviour in suitable limits, analytically in 2D e

(David (1985), Ambjgrn, Durhuus & Frohlich ?, [

(1985), Kazakov (1985), ...), and numerically in 20 b7 path integral history (T. Budd)
4D (Agishtein & Migdal (1992), Ambj@rn & Jurkiewicz (1992), ...),
amounting to nonperturbative, manifestly coordinate-independent
implementations of the (Euclidean) gravitational path integral.
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CDT Quantum Gravity

DT QG provides a concrete lattice framework to

define and quantitatively evaluate pre-geometric —

observables (like spectral and Hausdorff dimension)' e,

in a regime far away from classicality, and addresses Paz;:’:; iﬂfﬁ;ﬁﬂat)
several important issues (measure, unboundedness

problem, uniqueness, invariance, cosmological constant A" > 0).
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CDT Quantum Gravity

DT QG provides a concrete lattice framework to

define and quantitatively evaluate pre-geometric

observables (like spectral and Hausdorff dimension)

in a regime far away from classicality, and addresses Partof a (piecewise flat)
] 3 causal triangulation

several important issues (measure, unboundedness

problem, uniqueness, invariance, cosmological constant A" > Q).

Z(Gn, )= / Dg ' 1 - Z2°PN(G, A) = lim C i SsEe 7]
a—

ine { Ui .

gec Lor(M) causal
Diff (M) triang. T

To find extended 4D spacetime in a large-scale limit, realize reflection
positivity and obtain second-order phase transitions, one seems to
need a causal, Lorentzian version (with WiIck rotation) of this set-up,
Causal Dynamical Triangulations. (Ambjorn & RL (1998), Ambjarn,
Jurkiewicz & RL (2004), ...)
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Back to quantum observables

New results from and about CDT QG (on phase structure, critical
behaviour, RG trajectories, properties of quantum spacetime) have
come from evaluating a few nonperturbative quantum observables,
operationally defined in terms of distance and volume measurements.

(Pre-)geometric observables display a significant degree of universality
and can signal generic pathologies (aka ‘those d... branched polymers’).

Impact across approaches of the spectral dimension: extracting a
dimension from the behaviour of random walkers on quantum
spacetime one finds a scale-dependent “dynamical dimensional
reduction” 4 - 2 near €p (Ambjgrn, Jurkiewicz & RL (2005), Lauscher &
Reuter (2005), ...); perhaps a universal feature of QG? (Carlip (2017))

Going beyond “dimension”, one has measured the global shape {V(t)>
(=spatial volume as a function of proper time) of the quantum universe
emerging in CDT QG, and it matches that of a de Sitter universe!
(Ambjgrn, Gorlich, Jurkiewicz & RL (2008))
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Phase diagram of CDT QG
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The challenge of “guantum curvature”

Even if the quantum universe is de Sitter-shaped,
it does not mean it’s a (Euclidean) de Sitter space S%.

e just a single (global) mode of the metric is
monitored, but there are many more (this is
not homogeneous & isotropic cosmology!)

MC snapshot of the shape

1 <V(t)> of the universe

® microscopic gluing rules for discrete triangulations are anisotropic,
no spatial topology changes allowed in CDT

Challenge for afficionados of
“quantum bits”: what is the
curvature of a non-smooth
metric space? R'yu(x) = ? W SIMPLICIAL ;-Al\

MANFOLD 'Ry HipeAcuBE
We have successfully defined and tested quantum Ricci curvature.

(N. Klitgaard & RL, PRD 97 (2018) no.4, 0460008 and no.10, 106017)
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Introducing quantum Ricci curvature

In D dimensions, the key idea is to compare the distance d between
two (D-1)-spheres with the distance 6 between their centres.

The sphere-distance criterion:

“On a metric space with positive
(negative) Ricci curvature, the distance
d of two nearby spheres S, and S, is
smaller (bigger) than the distance 6 of
their centres.”

—

(c.f. Y. Ollivier, J. Funct. Anal. 256 (2009) 810)

Our variant uses the average sphere distance of two
spheres of radius 6 whose centres are a distance® apart,

d 85 5; - / dD—l h
(SpsSp) vol(Sp) vol(S%) Js -

(4]
p
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Introducing quantum Ricci curvature

In D dimensions, the key idea is to compare the distance d between
two (D-1)-spheres with the distance 6 between their centres.

The sphere-distance criterion:

“On a metric space with positive
(negative) Ricci curvature, the distance
d of two nearby spheres S, and S, is
smaller (bigger) than the distance 6 of
their centres.”

S

(c.f. Y. Ollivier, J. Funct. Anal. 256 (2009) 810)

Our variant uses the average sphere distance of two
spheres of radius 6 whose centres are a distance 6 apart,

p 1 1
d(S°%.8%,) := / dPtq vh
(Sps Sp7) vol(Sy) vol(S%)) 58 A
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Implementing quantum Ricci curvature

From the quotient of sphere distance and centre distance A
we extract the “quantum Ricci curvature K at scale 67, '
d(S238°,) —$

oy '

)
where ¢4 is a non-universal constant depending on the type and the
dimension D of the space. For smooth Riemannian manifolds and 6 << 1:

Cq(l_Kq(pap,))a 5:d(pap’)} D<Cq <33

1.5746 + 62 (—0.1440 Ric(v,v) + O(3)), D=2,
= < 1.6250 + 82 (—0.0612 Ric(v,v) — 0.0122 R + O(8)), D =3,
1.6524 + 62 (—0.0469 Ric(v,v) — 0.0067 R + O(8)), D =4,

e involves only distance and volume measurements

» the directional/tensorial character is captured by the “double sphere”,
coarse-graining by the variable scale 6

e simplest observable (average Ricci scalar): average first over p’, then p
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Quantum curvature of the de Sitter universe

To interpret quantum results, we have
built a reference library, computing K4(6)
on various classical spaces (constant-
curvature, ellipsoids, polytopes, ...).

Measurements in 4D CDT QG on $° x S?
at volumes N;< 1.2 x 10° clearly show
that <{K;> > 0, with a good fit to S*! Same

hyperbolic space: K; <0

flat space: K, =0

sphere: Kq>0

T T PRV = {

0 1 2 3 4 5 ]

K, on classical, constantly curved
spaces in D=2 (curvature radius 1) Ric in time- and spacelike directions!

N.4=1200k e N4=300k

lattice artefacts L

ford <5

1.5¢
« timelike

1.0 spacelike

05
cont. 4-sphere
5 2 4 6 8 10 12 14

10 12 14

(Ky» of the dynamically generated de Sitter universe (N. Klitgaard & RL, arXiv:2006.06263)
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Summary

Nonperturbative quantum gravity can be studied in a lattice setting,
in close analogy with lattice QCD, but taking into account the
dynamical nature of geometry. Quantum observables are crucial.

The full power of Regge’s idea of describing geometry without
coordinates unfolds in nonperturbative QG in terms of Causal
Dynamical Triangulations, yielding a truly geometric path integral.

Despite the absence of smoothness, one can define a notion of Ricci
curvature that appears to be well-defined all the way to the Planck

scale. Remarkably, we have found good evidence that the emergent
quantum de Sitter universe at ~10 €5 is compatible with a round 5%,

CDT REVIEWS: J. Ambjgrn, A. Gorlich, J. Jurkiewicz & RL, Phys. Rep. 519
(2012) 127, arXiv: 1203.3591; RL, CQG 37 (2020) 013002, arXiv:1905.08669
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