Title: Random tensors, melonic theories and quantum gravity

Speakers: Sylvain Carrozza

Collection: Quantum Gravity 2020
Date: July 17, 2020-10:30 AM
URL: http://pirsa.org/20070005
Abstract: I will present a brief review of large-N tensor models and their applications in quantum gravity. On the one hand, they provide a general platform to investigate random geometry in an arbitrary number of dimensions, in analogy with the matrix models approach to two-dimensional quantum gravity. Previously known universality classes of random geometries have been identified in this context, with continuous random trees acting as strong attractors. On the other hand, the same combinatorial structure supports a generic family of large-N quantum theories, collectively known as melonic theories. Being largely solvable, they have opened a new window into strongly-coupled quantum theory, and via holography, into quantum gravity. Prime examples are provided by the SYK model and generalizations, which capture essential features of Jackiw-Teitelboim gravity.

Random tensors, melonic theories and quantum gravity

Sylvain Carrozza

fi

Quantum Gravity 2020
Perimeter Institute for Theoretical Physics
July 14, 2020

Outline

Introduction: vector, matrix and tensor models
$(d=0)$ Random geometry
$(d \geq 1)$ Melonic quantum (field) theories

Questions

TOPOLOGICAL EXPANSION OF MATRIX MODELS

$$
\mathcal{Z}_{N}(\lambda)=\int \mathrm{d} M e^{-S(M)}, \quad S(M)=\frac{1}{2} \operatorname{tr}\left(M^{2}\right)-\frac{\lambda}{N} \operatorname{tr}\left(M^{4}\right)+\cdots
$$

Universal large- N expansion
$\ln \mathcal{Z}_{N}(\lambda)=\sum_{g \in \mathbb{N}}^{*} N^{2-2 g} \mathcal{F}_{g}(\lambda) \quad$ with $\quad \mathcal{F}_{g}(\lambda)=\sum_{\mathcal{G}, g(\mathcal{G})=g} \lambda^{n_{\mathcal{G}}} A(\mathcal{G})$

THE LARGE-N LIMIT: A NONPERTURBATIVE TOOL FOR Q

- Random surfaces and QG in $D=2$

Matrix integral at large $N \rightarrow$ statistical sum of
Feynman graphs \simeq Euclidean space-time geometries
a

- Strongly-coupled QFT

Large number of fields/symmetries e.g. $\mathrm{SU}(3) \rightarrow \mathrm{SU}(N)$

- perturbation theory in $1 / \mathrm{N}$
- non-perturbative effects in coupling constants λ

Key probe of holographic dualities:

- gauge theory \leftrightarrow Einstein gravity
- vector models \leftrightarrow higher-spin gravity

What are tensor models good for in these two lines of thoughts?

$$
\ln \int \mathrm{d} M e^{-N\left(\frac{1}{2} \operatorname{tr} M^{2}-\frac{\lambda}{\rho} \operatorname{tr} M^{\rho}\right)} \underset{N \rightarrow \infty}{\rightarrow} \mathcal{F}_{0}(\lambda)=\sum_{\Delta} \lambda^{n_{\Delta}}
$$

- Large- N limit \Rightarrow generating function of planar p-angulations Δ, weighted by $n_{\Delta} \sim$ area.
- Critical regime: $\lambda \rightarrow \lambda_{c} \Rightarrow$ continuum limit.
- Double-scaling \Rightarrow non-trivial sum over topologies ("third quantization").

Universality: the distribution over 2d metrics converges to the Brownian sphere in the continuum limit, independently of the details of the potential (e.g. value of p).
\rightarrow basic random geometry behind Liouville QG.

QG IN $D \geq 3$ AS A TENSOR INTEGRAL?

$$
\mathcal{F}(\lambda)=\ln \int \mathrm{d} T \exp \left(-T_{a b c} T_{a b c}+\frac{\lambda}{N^{\alpha}} T_{a e b} T_{b f c} T_{c e d} T_{d f a}\right)
$$

[Ambjørn, Durhuss, Jónsson '91; Gross '91; Sasakura '91;...]

- Challenges:
- matrix techniques not available (spectral representation, orthogonal potynomials...)
- interplay between combinatorics and topology: nice global properties from local Feynman rules?

$$
\Rightarrow \text { no known large- } N \text { expansion. }
$$

- Path to progress: [Gurau '09; Gurau, Rivasseau, Bonzom,... '10s]
- more symmetry: $\mathrm{U}(N)^{D}$-tensors.
- tractable combinatorics, mapping to sufficiently regular topological spaces.

$$
\Rightarrow \text { universal large- } N \text { expansion, in any } D \geq 3 .
$$

Colored tensor models

$$
T_{a_{1} a_{2} \cdots a_{D}}=\overbrace{a_{1}}^{\int_{a_{2}}} \overbrace{a_{D}} \quad \overbrace{a_{D}}=\bar{T}_{a_{2} a_{2} \cdots a_{D}}
$$

$\mathrm{U}(N)^{D}$ invariants indexed by bubble diagrams \mathcal{B} :
($D=2$)

COLORED TENSOR MODELS

$\mathrm{U}(N)^{D}$ invariants indexed by bubble diagrams \mathcal{B} :
($D=3$)

Colored tensor models

$\mathrm{U}(N)^{D}$ invariants indexed by bubble diagrams \mathcal{B} :

Partition function:

$$
\mathcal{F}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)=\ln \int \mathrm{d} T \exp \left(-\bar{T} \cdot T+\sum_{\mathcal{B}_{*}} \frac{\lambda_{\mathcal{B}}}{N^{\alpha}(\mathcal{B})} \operatorname{Tr}_{\mathcal{B}_{\mathcal{B}}}(\bar{T}, T)\right)
$$

COLORED TRIANGULATIONS

Theorem:
[Pezzana '74]
D-colored graph \Leftrightarrow triangulation Δ of pseudo-manifold of $\operatorname{dim} . D-1$.
Colors \rightarrow unambiguous identification of sub-simplices and their gluings.

- Bubble $\simeq D$-colored graph \simeq boundary of D-cell.

- Feynman graph $\simeq(D+1)$-colored graph $\simeq \Delta$ of dimension D.

COLORED TRIANGULATIONS

Theorem:
[Pezzana '74] D-colored graph \Leftrightarrow triangulation Δ of pseudo-manifold of $\operatorname{dim} . D-1$.

Colors \rightarrow unambiguous identification of sub-simplices and their gluings.

- Bubble $\simeq D$-colored graph \simeq boundary of D-cell.

- Feynman graph $\simeq(D+1)$-colored graph $\simeq \Delta$ of dimension D.

Scaling of bubbles and Feynman expansion governed by Gurau degree ω :

$$
\begin{aligned}
\mathcal{F}\left(\left\{\lambda_{\mathcal{B}}\right\}\right) & =\ln \int \mathrm{d} T \exp \left(-\bar{T} \cdot T+\sum_{\mathcal{B}} \lambda_{\mathcal{B}} N^{-\frac{2}{(D-2)!} \omega(\mathcal{B})} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T)\right) \\
& =\sum_{\omega \in \mathbb{N}} N^{D-\frac{2}{(D-1)!} \omega} \mathcal{F}_{\omega}\left(\left\{\lambda_{\mathcal{B}}\right\}\right)
\end{aligned}
$$

where

$$
\omega(\Delta)=D-n_{D-2}(\Delta)+\frac{D(D-1)}{4} n_{D}(\Delta)
$$

- $\omega \in \mathbb{N}$
- generalization of the genus: $D=2 \Rightarrow \omega=2 g$
- not a topological invariant of Δ when $D \geq 3$
- however: $\omega=0 \Rightarrow \Delta$ is a D-sphere

[Bonzom, Gurau, Riello, Rivasseau '11;...]

$$
\omega(\Delta)=0 \quad \Leftrightarrow \quad \Delta \text { is melonic }
$$

\rightarrow special triangulations of the D-sphere, with a tree-like combinatorial structure.

Closed equation for their generating function:

$$
G(\lambda)=1+\lambda G(\lambda)^{D+1} \quad \text { (Fuss-Catalan) }
$$

Critical behaviour:

$$
\begin{aligned}
& G\left(\lambda_{c}\right)-G(\lambda) \underset{\lambda \rightarrow \lambda_{c}}{\sim} K\left(\lambda_{c}-\lambda\right)^{1 / 2} \\
\Leftrightarrow & \#\{\text { rooted melonic } \Delta\} \sim K \lambda_{c}^{-n_{\Delta}} n_{\Delta}^{-3 / 2}
\end{aligned}
$$

Universal critical exponent $3 / 2$ associated to combinatorial trees.

FURTHER RESULTS

- Combinatorial classification of graphs at order $\omega>0$:
"it's melons all the way down".
- Double-scaling. [Bonzom, Gurau, Kaminski, Dartois, Oriti, Ryan, Tanasa '13 '14]
- Schwinger-Dyson eq. \rightarrow analogue of loop equations.
- Non-perturbative treatment.
- Renormalization group approach to large- N. Lumma, Pereira...]
-
- Applications in Group Field Theory:

> [Boulatov, Ooguri, '92... Freidel, Gurau, Oriti '00s '10s...]

Melonic behaviour \Rightarrow rigorous renormalization theorems

Most recent developments focused on cosmological applications.

BEYOND BRANCHED POLYMERS?

No-go:

- Non-melonic large- N limits have been explored.
[Bonzom, Delpouve, Rivasseau '15; Bonzom, Lionni '16; Lionni, Thüringen '17]
- Universality theorem: $D=3 \Rightarrow$ branched polymers for arbitrary spherical bubbles.

Yes go?

- D even \Rightarrow Brownian sphere, branched polymers and mixtures.
[Bonzom, Delpouve, Rivasseau '15]
- Simple combinatorial restrictions may change the universality class: branched polymers $\underset{\text { 2PI }}{\longrightarrow}$ Ising on a random surface
[Benedetti, SC, Toriumi, Valette '20]
Major open question:
genuinely new random geometric phase suitable for QG in $D \geq 3$?
[Lionni, Marckert '19]

SUMMARY

Tensor models for random geometry:

- well-defined generalization of the matrix models approach;
- reproduce previously known universality classes: continuous random tree, Brownian sphere, and mixtures;
- tend to be dominated by tree-like combinatorial species \Rightarrow no genuinely new universality class discovered so far...
...but a vast parameter space remains to be explored.

Entry points into the literature:

- "Random tensors", Gurau, 2016;
- "The Tensor Track" I-IV, Rivasseau, 2011-2016;
- "Colored Discrete Spaces", Lionni, 2018.

Sachdev-Ye-Kitaev model

[Sachdev, Ye, Georges, Parcollet '90s...; Kitaev '15, Maldacena, Stanford, Polchinski, Rosenhaus...]

- Disordered system of N Majorana fermions ψ_{a} in $d=0+1$

$$
H \sim J_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d}, \quad\left\langle J_{a b c d}\right\rangle=0, \quad\left\langle J_{a b c d}^{2}\right\rangle \sim \frac{\lambda^{2}}{N^{3}}
$$

- Many interesting properties:
- solvable at large N
- emergent conformal symmetry at strong coupling
- same symmetry breaking as in Jackiw-Teitelboim quantum gravity \rightarrow toy-models of quantum black holes
- maximal quantum chaos
[Maldacena, Shenker, Stanford]
- Same melonic large N limit as tensor models
[Witten '16]
\rightarrow SYK-like quantum-mechanical models:
- same qualitative properties at large N and strong coupling;
- no disorder.

INTRODUCTION
OOOO

Vector ϕ_{a}
RANDOM GEOMETRY
000000000000

GENERAL FRAMEWORK FOR 3-INDEX TENSORS

Theorem: A melonic large- N limit exists whenever

 the tensor representation is irreducible.
[Benedetti, SC, Gurau, Kolanovski '17-Commun. Math. Phys.] [SC '18; SC, Pozsgay '18]
Motivated by earlier work / conjecture: [Klebanov, Tarnopolsky '17]

- Applicable to $\mathrm{O}(N)$ and $\operatorname{Sp}(N)$ tensors, which are symmetric, antisymmetric or mixed under index permutation.
- Irreduciblity: removes vector modes and maintains

Key condition missing in models from the 90s.

- Generalizable to Hermitian or symmetric multi-matrix models.

Klebanov-Tarnopolsky model

Tensor quantum mechanics of N^{3} Majorana fermions:

$$
S=\int d t\left(\frac{\mathrm{i}}{2} \psi_{i_{1} i_{1} i_{3}} \partial_{t} \psi_{i_{1} i_{2} i_{3}}+\frac{\lambda}{4 N^{3 / 2}} \psi_{i_{1} i_{2} i_{3}} \psi_{i_{4} i_{5} i_{3}} \psi_{i_{4} i_{2} i_{6}} \psi_{i_{1} i_{5} i_{6}}\right)
$$

- Melonic dominance at large $N \Rightarrow$ closed Schwinger-Dyson equation: [SC, Tanasa '15]

- SYK melonic equation: $\left\langle T\left(\psi_{a_{1} a_{2} a_{3}}\left(t_{1}\right) \psi_{b_{1} b_{2} b_{3}}\left(t_{2}\right)\right)\right\rangle \equiv G\left(t_{1}, t_{2}\right) \prod_{i=1}^{3} \delta_{a_{j}, b_{i}}$

$$
G\left(t_{1}, t_{2}\right)=G_{\text {free }}\left(t_{1}, t_{2}\right)+\lambda^{2} \int \mathrm{~d} t \mathrm{~d} t^{\prime} G_{\text {free }}\left(t_{1}, t\right)\left[G\left(t, t^{\prime}\right)\right]^{3} G\left(t^{\prime}, t_{2}\right)
$$

Strong-coupling regime

$$
G\left(t_{1}, t_{2}\right)=G_{\text {free }}\left(t_{1}, t_{2}\right)+\lambda^{2} \int \mathrm{~d} t \mathrm{~d} t^{\prime} G_{\text {free }}\left(t_{1}, t\right)\left[G\left(t, t^{\prime}\right)\right]^{3} G\left(t^{\prime}, t_{2}\right)
$$

- At strong coupling:

$$
\lambda^{2} \int \mathrm{~d} t G\left(t_{1}, t\right)\left[G\left(t, t_{2}\right)\right]^{3}=-\delta\left(t_{1}-t_{2}\right)
$$

- One special solution (conformal solution):

$$
G\left(t_{1}, t_{2}\right)=-\left(\frac{1}{4 \pi \lambda^{2}}\right)^{1 / 4} \frac{\operatorname{sgn}\left(t_{1}-t_{2}\right)}{\left|t_{1}-t_{2}\right|^{2 \Delta}}, \quad \Delta=\frac{1}{4}
$$

- Emergent conformal invariance: reparametrization $t \mapsto f(t)$

$$
G\left(t_{1}, t_{2}\right) \mapsto\left|f^{\prime}\left(t_{1}\right) f^{\prime}\left(t_{2}\right)\right|^{1 / 4} G\left(f\left(t_{1}\right), f\left(t_{2}\right)\right)
$$

\Rightarrow infinite number of solutions?

SYMMETRY BREAKING

$$
G\left(t_{1}, t_{2}\right)=G_{\text {free }}\left(t_{1}, t_{2}\right)+\lambda^{2} \int \mathrm{~d} t \mathrm{~d} t^{\prime} G_{\text {free }}\left(t_{1}, t\right)\left[G\left(t, t^{\prime}\right)\right]^{3} G\left(t^{\prime}, t_{2}\right)
$$

- Spontaneous breaking to $\mathrm{SL}(2, \mathbb{R}) \Rightarrow$ Goldstone modes $f \in \operatorname{Diff}(\mathbb{R}) / S L(2, \mathbb{R})$?
- $G_{\text {free }}$ term \Rightarrow explicit breaking \Rightarrow non-zero Schwarzian effective action

$$
\begin{aligned}
& S_{\text {eff }}[f] \sim \frac{1}{\lambda} \int \mathrm{~d} t\{f, t\} \\
& \left(\{f, t\}=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}\right. \text { is the Schwarzian derivative) }
\end{aligned}
$$

Effective action for boundary gravitons in JT gravity \Rightarrow near $\mathrm{AdS}_{2} /$ near CFT_{1} correspondence.

- General correspondence between:
disordered SYK-ike systems \leftrightarrow unitary tensor quantum mechanics
leading to identical large- N Schwinger-Dyson eq.

> [Klebanov, Tarnopolsky et al.; Ferrari et al.; ...]

- Main specificity of tensor models over disordered models:

Growth of Hilbert space: $\#\{$ states $\} \sim \exp \left(\right.$ cte $\left.\times N^{3}\right)$
\Rightarrow numerically challenging at finite- N

N	Number of states
1	2
2	36
3	595354780
Real $\mathrm{O}(2 \mathrm{~N})^{3}$	
(Klebanov-Tarnopolsky)	

N	Number of states
1	3
2	39
3	170640
Complex USp(2N) symmetric	
(SC-Pozsgay)	

TENSOR FIELD THEORY

Unlike SYK, tensor models naturally fit in the framework of local quantum field theory.

QFT generalization?

Rely on tensor models to construct melonic theories in $d>1$.

Why it is interesting:

- only diagrams that proliferate are melons and ladder diagrams \Rightarrow explicit non-perturbative resummation sometimes possible
- melons are bi-local
\Rightarrow anomalous dimensions \Rightarrow non-trivial CFTs and RG flows
- 4-point functions $=$ sums of ladder diagrams
\Rightarrow non-perturbative access to the spectrum
\Rightarrow theoretical insights into strongly-coupled QFT.

Fixed points of Wilson-Fisher type

- Four-fermion field theory:
[Prakash, Sinah '17; Benedetti, SC, Gurau, Sfondrini '17]

$$
\beta^{(\varepsilon)}=-\varepsilon \lambda+\frac{3}{\pi^{2}} \lambda^{3}
$$

Weakly-interacting IR fixed point in $d=2-\varepsilon$.
Presumably flows to strongly-interacting SYK-like phase as $\varepsilon \mapsto 1$.

- Bosonic field theory:

Quartic models in $d=4-\varepsilon \quad$ [Giombi, Klebanov, Tarnopolsky '17]
Sextic models in $d=3-\varepsilon \quad$ [Giombi, Klebanov, Popov, Prakash, Tarnopolsky '18; Benedetti, Delporte, Harribey, Sinha '19]
\exists IR melonic fixed points, but they are generically unstable.

LONG-RANGE BOSONIC MODELS

Bosonic tensor field theory in $d<4$:

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} \varphi_{a b c}(-\Delta)^{\zeta} \varphi_{a b c}+\frac{m^{2 \zeta}}{2} \varphi_{a b c} \varphi_{a b c} \\
& +\frac{i \lambda}{4 N^{3 / 2}} \amalg+\frac{\lambda_{P}}{4 N^{2}} \longleftrightarrow+\frac{\lambda_{D}}{4 N^{3}}
\end{aligned}
$$

- Long-range kinetic term with $\zeta=\frac{d}{4}$. [Gross, Rosenhaus '16] in $d=1$
- Imaginary tetrahedral coupling.
- Large- N melonic limit \Rightarrow flow to unitary CFT in the IR:
[Benedetti, Gurau, Harribey, Suzuki '19; Benedetti, Gurau, Suzuki '20]
- spectrum and OPE coefficients explicitly computable;
- no local stress-tensor.

Glimpse of a new class of large N CFTs? Any relevance for holography?

