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Abstract: We compute the path integral of three-dimensional gravity with negative cosmological constant on spaces which are topologically atorus
times an interval. These are Euclidean wormholes, which smoothly interpolate between two asymptotically Euclidean AdS3 regions with torus
boundary. From our results we obtain the spectral correlations between BTZ black hole microstates near threshold, as well as extract the spectral
form factor at fixed momentum, which has linear growth in time with small fluctuations around it. The low-energy limit of these correlations is
precisely that of a double-scaled random matrix ensemble with Virasoro symmetry. Our findings suggest that if pure three-dimensional gravity has a
holographic dual, then the dual is an ensemble which generalizes random matrix theory.
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To appear tonight [JC, Jensen ‘20]
1808.03263 [JC, Jensen ‘18]

AdSs; and Random CFT

JORDAN COTLER

KIZ@@LC



Introduction (Kitaev ‘15]

[Maldacena, Stanford '17]
[Jensen 17]

Holographic dualities with disorder [Maldacena, Stanford, Yang ‘17]
[Engelsdy, Mertens, Verlinde ‘17]

SYK model Nearly-AdS, gravity + matter

[Saad, Shenker, Stanford ‘18]

Matrix mOdEI NEHI"V-AdSz JT gravity [Saad, Shenker, Stanford ‘19]

Random CFT Pure AdSs gravity Hg el :;3}

@@L
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Pure AdSs gravity

Classically soluble
Has black holes

Gravitational edge modes (i.e., large diffeomorphisms)
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Pure AdSs gravity

Classically soluble
Has black holes

Gravitational edge modes (i.e., large diffeomorphisms)

Marginal interactions ~ G/ L

Moduli, sum over topologies
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Pure AdSs gravity

Quantum theory has many puzzles

Not thought to be dual to a (single) CFT — various no-go’s

Example puzzle: Euclidean partition function on D? x S*
First studied in [Maloney, Witten ‘07] (path integral: [JC, Jensen ‘18])

Can be viewed as sum over saddles with torus conformal boundary having
complex structure 7, and continuously connected geometries

Density of states is not that of a dual unitary compact CFT

Spectral gap between vacuum and BTZ threshold, spectrum above is
continuous; density of states negative near spectral edge
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Pure AdSs gravity

Quantum theory has many puzzles

Not thought to be dual to a (single) CFT — various no-go’s

Example puzzle: Euclidean partition function on D? x S*
First studied in [Maloney, Witten ‘07] (path integral: [JC, Jensen ‘18])

Can be viewed as sum over saddles with torus conformal boundary having
complex structure 7, and continuously connected geometries

Density of states is not that of a dual unitary compact CFT

Spectral gap between vacuum and BTZ threshold,

? density of states negative near spectral edge [Maloney, Witten ‘07]
[Keller, Maloney ‘15]

[Benjamin, Ooguri, Shao, Wang ‘19]
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Idea: Pure AdS3 quantum gravity is dual to an ensemble

What would be compelling evidence of this?

compute and examine properties of spectral form factor
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..........
........

Spectral form factor

Consider an ensemble of d X d Hamiltonians with measure dH

Spectral form factor is given by

L3

Z(B,t) = /dHtr(e—(ﬁJrz’t)H)tr(6—(6—z't)H)

_ <tr(e—(ﬁ—i—it)H)tr(e—(ﬂ—it)H) >

ensemble

eZOO
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SYK Z(B,t) for N =26 (d =8192), 3 =5

Z(B,t)/2(B,0)
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[JC, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, Tezuka ‘16]
Figure adapted from [JC, Hunter-Jones, Liu, Yoshida ‘17]
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Z(B,t)/2(B,0)

1k
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GUE Z(B,t) for d =500, 8 =5

Z(B,t) for |E] = 10000
Z(8,1) for || = 1
—— Time avg of [£| =1 Z(B,1)

[Prange ‘96]
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[JC, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, Tezuka ‘16]
Figure adapted from [JC, Hunter-Jones, Liu, Yoshida ‘17]
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Question: Does AdS; gravity produce a spectral form factor
ramp with small fluctuations?

What do we mean by the spectral form factor in AdSs gravity?

<tI‘ (e—lm(ﬁ)H—I—i Re(Tl)P)tI_ (e_lm(Tz)H—i—i Re('rz)P)>

ensemble, conn.

= <ZCFT( )ZCFT( )>ensemble, conn.

7
2 [ -
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Outline

Computation of Euclidean wormhole

RMT Prediction and Extracting the Ramp

Random CFT

Discussion
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Setup

Want to compute:

AdS [dglr2xr 1 [ aPs sg(R12)-5 »
ZTQX?(T 7'2) / ff 167rGf VI(R+2)—Sba

L

x St

K2 @@L
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No smooth saddle points L

Setup

Want to compute:

e dglr2x1 3 [ e JG(R+2)—Shay
ZTQX?(T 7'2) / ff 167rGf VI(R+2)—Sba
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Setup

Let’s begin with Lorentzian signature

Change to first-order variables (ef;, w5 y)

1 1
_IGTFGfeABC (eA/\(deC+wBD AwPCY + geA/\eB/\ec>

&

Has the form of a phase space path integral

S = fdt (pid’, — H(p,q) + Xa C*(p, q))

Lagrange multipliers in the gravity setting are ¢} , wABO
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Simpler calculation: D? x R c, ensen s}

Integrate out Lagrange multiplier fields, and solve for constraints

(compatible with boundary conditions)

Residual fields ¢, ¢ are boundary reparameterizations

Sle, ¢] = S_[¢] + S+ [¢]

C "9, & ,
Stldl = -5~ d*z (qﬁqb’iqu _¢8i¢)
0:3, '=8,, tT =z +t, d(x + 2m,t) = p(x,t) + 2w, ¢’ >0
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Simpler calculation: D? x R c, ensen s}

Integrate out Lagrange multiplier fields, and solve for constraints

(compatible with boundary conditions)

Residual fields ¢, ¢ are boundary reparameterizations

S, ¢] = S—[¢] + S+ (4]

C "8, & ,
Selfl = —51— [ & (¢¢,§¢ —asam)
C:;é, "'=9,, rT =z +t, d(x + 27, t) = p(x,t) +2m, ¢’ >0

At fixed time, ¢, ¢ € Diff(S!)/PSL(2;R)
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Simpler calculation: D? x R c, ensen s}

An analog of the Schwarzian action for Lorentzian AdS; gravity

It is also the path integral quantization of the first ©
exceptional coadjoint orbit of Virasoro

[Alekseev, Shatashvili ‘89] "

C dzm (Qﬁ”@i(ﬁ,

Sj:[(}ﬁ]:—m ¢12

5 ¢’5i¢)

———————
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Simpler calculation: D? x S uc, sensen 1]

Go to Euclideantime t = —iy, z=x+ iy, z ~ z+ 2mn + 2nmr

C Hé / B
Se,-|¢] = odr fdzm (Cbgb,f B qb’c’?qb)

78882 (1) = |x0,0(7)[?

1-loop exact (“quantization” of [Stanford, Witten 17])
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Simpler calculation: D? x S uc, sensen 1]

Go to Euclidean time t = —iy, z =z + 1y, z ~ 2+ 27n+ 2mm7

C Hé / B
Se,-|¢] = odm fdzm (Cbgb,f B qb’c’?qb)

783882 (1) = |x0,0(7)[?

1-loop exact (“quantization” of [Stanford, Witten ‘17])
Renormalization of central charge ¢ = C' + 13

Not modular invariant; sum over choice of contractible cycle (obtain M\W)
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Euclidean Wormhole T? x I i, sensen 20]

Integrate out Lagrange multiplier fields, and solve for constraints
(compatible with boundary conditions)

Residual fields &, & on each boundary:
®; =b(y)r+¢;, ®;=by)z+¢;, j=1,2
r~T+2m, y~y+27w

ij(x’y) ~ qu(zv,y) + a’(y)a Q_ﬁj(xvy) ~ ggj(xvy) + fb(y)
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Euclidean Wormhole T? x I i, sensen 20]

Sample of a geometry: b(y) =b, b(y) =b, ¢ =¢ =0

dsgpatlal bb sinh?(p) + ~ (b + b) ) dz? + dp?
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Euclidean Wormhole T? x I i, sensen 20]

Full action (9, = i(—z"rjé?mJrz'ay) )

C oY 0, P @”6 (I)’
S = 57 d’z (—1 + ®10,®, + —1 + &' 0,9,
T 1 1
(I)Ha (I)f l!a (I)/
—|——2 -+ d’/ 82(1)2 + 2 —+ (I), 82@2)

Y(y) = 27r;(@!) /; K (#1(2,9) = d1(2,0))

=z 1

Y(y) = mj(; dz (¢2(x,y) — da(z,y))

Introducing the twists fields

Sgg/ dy (b0,Y — b0,Y) yb = 8yb =0 *
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Euclidean Wormhole T? x I i, sensen 20]

) 2
Our partition function can be written as (c=C+1, ¢=¢"", h= C(bgj ) )
db?2dY db*dY _ _
Zr?zdffr(ﬁ,’@) = Z / (2n)? Wmoduli ZAs(T1]0) Zxg(T1]|0) Zas(72|b) Z g (T2|b)

twist windings
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Euclidean Wormhole T? x I i, sensen 20]

Our partition function can be written as (c=C+1, ¢=€*", h=

1 Im(71)Im(y7s)

AdSs ol i

Zrii(mam) = 55 Zo(n)Zo(m) ) |71+ y72|?
~ESL(2;Z)

Zo(T)

1
 /Tm(7)|n(r)?
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Euclidean Wormhole T? x I i, sensen 20]

Our partition function can be writtenas (c=C+1, ¢=€*", h=

1 Im(71)Im(~y7s)
AdSs LI E .
ZszI(TlnTQ) — 27_[_2 ZO(Tl)ZO(Tz) ’Tl +77—2‘2
YyESL(2;Z)

Z()(T)

1
 /Tm(7)|n()|?

Final result required a modular sum as per MW
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Properties of the Result

Im(71)Im(~y72)
|71 + y72|?

1
AdSs _
oy (T1,T2) = 9.2 Zo(11)Z0(T2) Z
yESL(2;Z)

Sum almost converges; divergence is pure additive constant

Divergence can be treated using Zeta-function regularization

Double modular invariance Z25°3 (y7y,7/19) = Zoso3 (11, T2)
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Prediction from Virasoro RMT

Before extracting the ramp from the wormhole amplitude, let’s try to
predict what its behavior should be

Amounts to studying level statistics for RMT with Virasoro symmetry

For simplicity, let’s study the spectral statistics of primary states, each
labeled by an energy and momentum

[H7 P] =0 {HS}SEZ
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Prediction from Virasoro RMT

Suppose average density of states for H . block has the form

Ps (E)
| > E "
|
(T > B) E, [Eynard, Orantin]
(tr(e” BT Hor yir(em BT H o)) oenble = ZE (B + 14T, B — iT) = % e P14, 5, + (nonpert.)
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Fourier decomposition of Z2:%3 (7, 1)

1 = : : ~
ZES (1, m) = 55 Zo(m)Zo(ms) Yy, e PREIn 2R L (Im(ny), Im (7))

81,82=—00

Fourier coefficients somewhat complicated

Convenient to consider large Im(7) = 51, Im(72) = B2, with 51/82 fixed

F _ —2nlsi|fi—2nlsz|8y [ TPL2 (l))
P a1, B2) = ¢ (5222 5 +0 (3

L
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Disentangling the answer

Wormhole amplitude may be separated into a contribution from primary
states alone, and contributions from descendants (determined by symmetry)

R )
51 52(61:62) 61 + 182 581,82 ex ?. )8 ) ES |S‘ 12

T _ s
S] Sz(ﬁ—i_q’T fB ) = m € QﬁES] 631,52 —l_O(T 1)
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Comments

More generally, the full low-temperature 2-point fluctuation statistics of BTZ
microstates exactly matches the predictions of random matrix theory with
Virasoro symmetry (including contribution of descendants)

Deviations from standard RMT prediction suppressed in time / temperature
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Comments

More generally, the full low-temperature 2-point fluctuation statistics of BTZ
microstates exactly matches the predictions of random matrix theory with
Virasoro symmetry (including contribution of descendants)

Deviations from standard RMT prediction suppressed in time / temperature
Similar story when we gauge time reversal in the bulk, giving us global time

reversal symmetry on boundary
AdS; analog of JT analysis in [Stanford, Witten ‘19]
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Comments

More generally, the full low-temperature 2-point fluctuation statistics of BTZ
microstates exactly matches the predictions of random matrix theory with
Virasoro symmetry (including contribution of descendants)

Deviations from standard RMT prediction suppressed in time / temperature

Similar story when we gauge time reversal in the bulk, giving us global time
reversal symmetry on boundary

AdS; analog of JT analysis in [Stanford, Witten ‘19]

Compatible with nearly-AdS; JT limit of AdSs [Ghosh, Maxfield, Turiaci ‘19]
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Is AdSs dual to a RMT?

Leading low-temperature limit of wormhole amplitude exactly
matches double-scaled RMT with Virasoro symmetry

But:
Euclidean gravity allows arbitrary genus g boundaries
Power-law suppressed fluctuations of the ramp

Amplitudes invariant under independent modular transformations

Idea: Pure AdS; quantum gravity is dual to an ensemble of CFTs
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Preface to Conjectures

Sketch plausible schematic framework, follow logic of statistical physics
Organizing principle to go beyond T? x I

For the moment, cast aside pressing technical / conceptual concerns
Negativity of MW partition function
Lack of knowledge of irrational CFTs at large central charge (probably hard)

Optimistic hope: maybe many solutions to modular bootstrap that
“look” gravitational; can average over this solution space
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Ensemble of CFTs

(Zrz, () 275, (Vn))ensemble = ] AT Zr 5, () Zr.5,. ()

Euclidean AdS;

ZAng (Zgl ’ Ql; ... ; Egn 3 Qn)

S [ agesen
Q1 Q.

bulk topologies of Mg “ "1
OM3z=3%, LUy,

(ZT,Egl (Ql) . o ZT,Egn (Qn)>ensemble i ZAdS3 (291 y Ql; SRR Zgn ) Qn)

(In a putative e~ #/% expansion)
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Special case of torus boundaries

An ensemble of CFTs induces a Hamiltonian ensemble
() Z ) = (e HRAIPY g (o=t 5t

Then implies

de tr (e_lm(Tl)H“RE(Tl)P) ---tr (e_lm(T”)H“Re(Tﬂ)P) ~ Zaass (T?, 1155 T?, 7,)
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Outline

Computation of Euclidean wormhole

RMT Prediction and Extracting the Ramp

Random CFT

Discussion

Pirsa: 20060055 Page 40/41



Discussion

How to compute partition functions for >, ,, x S!, or even 2-manfolds
fibered over a circle?

More general 3-manifolds?

Generalizations to dS, higher-dimensional AdS wormbholes [JC, Jensen WIP]
New non-perturbative tools from phase space path integral

Random CFT and “mesoscopic quantum gravity”

Other CFT ensemble dualities? [Murungan, Stanford, Witten ‘17]
[Afkhami-Jeddi, Cohn, Hartman, Tajdini ‘20]

[Maloney, Witten ‘20]
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