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Abstract: | will review advances for gravity in asymptotically flat spacetimes arising from investigations into their structure in the infrared. The
recently-discovered infinite-dimensional symmetries of the scattering problem is the central result underlying much of the progress. Key examples
include symmetry-based explanations for the previously-observed universal nature of infrared phenomena including soft theorems and memory
effects. Moreover, the appearance of a Virasoro symmetry among the symmetries of four-dimensional gravity has led to a proposal for holography
in which the scattering amplitudes in quantum gravity are dual to correlation functions of a two-dimensiona conformal theory. The other
infinite-dimensional symmetry groups place additional non-trivial constraints on the dual theory.
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- soft modes and symmetries in the context of the scattering problem

Probing
quantum
gravity via
scattering

. Well-defined question for quantum

gravity in asymptotically flat spacetimes

. Answer with broad implications for

guantum gravity
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Signs, clues,

puzzles...
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Outline

Asymptotic symmetries (BMS)

Symmetries of scattering & soft theorems

Infrared divergences

Flatspace holography
* (Celestid¥-conformal field theory
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BMS symmetries

Method: Asymptotic symmetry analysis

asymptotic  allowed diffeomorphisms
symmetries  trivial diffeomorphisms

ds® = — du® — 2dudr + 2r%~,:dzdz
2mp

+ . du® +rC,.dz% + rC-sdz>
+ D*C, dudz + D*Cssdudz + - - -

Minkowski: _

ot = i~y 7 = ni{2y 7 Je
. 2
== (14 22)?

[Bondi, van der Burg, Metzner (1962); Sachs (1962)]
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BMS symmetries

Result: Supertranslations + Lorentz transformations

&= f(2,2)0u + -

* Independent translation symmetry at
every angle on the celestial sphere

* Desynchronization of events at different
angles on the celestial sphere

* |nfinite-dimensional symmetry group
= Infinitely many constraints?

[Bondi, van der Burg, Metzner (1962); Sachs (1962)]
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Symmetries of the S-matrix?

S-matrix: Puzzle:

* Analysis at past null infinity:
|\I’out> = SM’in) > Additional infinite-dimensional enhancement of
translations

’ » Symmetry group = (Future ST) x (Past ST
Symmetry of S-matrix: % VBB x| )
* Scattering problem is ill-defined?

I\Ijout/in> —=F I\Dgut/in> = Uillpout/in> > Examp|e: U™ = 1) U+ + 1 (arbitrary)
U7 ) = S|P Resolution:

* Intuition: only suitably paired generators on 7* and
T generate symmetries of the S-matrix

* Pairing can be determined from soft theorems

* Soft theorems are statements of invariance under
symmetry: _
» 4 (qjout|Q+8 — SQ |lpin) =0

[Strominger, hep-th/1312.2229; He, Lysov, Mitra, Strominger, hep-th/1401.7026]
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Soft theorems imply symmetries

» Can always interpret soft theorems as statements of invariance of the S*matrix under an infinite-
dimensional symmetry

Weinberg’s Soft Graviton Theorem

lim w(out|a, (wz)S|in) = ZS (2){out|S|in), Su(z, %) = ggi,pifpié

» Regard soft factor S, as eigenvalue of single particle state under operator Qg
Sk(2,2)|pk) = Qu (2, 2)|pk) = d(2.z)Ipk)

» RHS gives transformation of single particle states under 6, z

> S (out|Slin) = (out|[Qp . S]|in)

b=l

» Soft theorem implies that the S-matrix is invariant under the transformation 8(z,z) of single particle
states provided that a soft particle is added.

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]
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Soft theorems imply symmetries (continued)

Weinberg’s Soft Graviton Theorem

lim (out|wa (wz)S|in) = ZSk(outlSlin) = (out|[Q g, S]|in)

w—0
k=1
» Denote operators which adds soft particles Qg

Qs(z,2) ~ — lin%w [a+ (wa(z, %)) + al (wi(z, Z))]
w—r
» Then, the LHS can be written as S

lim (out|way (wz)S|in) = —(out|[Qs, S]|in)

w—0

» Rearranging the soft theorem

(out[[@, S]|in) = 0, Q=Qn+Qs

= Obtain statement of invariance under symmetry generated by Q

» Can always interpret soft theorems as statements of invariance of the S-matrix under an infinite-
dimensional symmetry

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]
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Supertranslations & Weinberg’s soft theorem

Construction of local charges

» Parametrize symmetry transformations by functions f(z, Z) rather than points (z, )

» Determine differential operator that localizes the soft factor for massless p,‘? = wi (1, X(zk, Zx))

n n Sz, 2} nE:VpEfpi
DZS;;(ZJ)ZZWMS(Q)(Z—Z;C) T e
b=1 k=1 s _gDzDz

Y

» Obtain charges with /ocal action (i.e. action only depends on f at point (z Zy))

5¢low) = Qulf1Ip) = / 27,2 fDSilp)

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]
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Supertranslations & Weinberg’s soft theorem

Equivalence with supertranslations

» When f =€1Dl, find total energy > Generic f = f(z,z):
Op=1|pr) = wr|pk) drlpk) = wi f (2, Zk) |Pr)
= Q[f = 1] generates ordinary time translations = f parametrizes amount of translation at every angle

Saddle point approximation

1

e b —a —a _A.A“ T_>OO — z_
WPy _ p—iwu iwr(1—&-3g) T2 i zwu,)/ ZCS(Q)(Z . Zk)
(2%

€

O(u, 2z, 2) ~ fdw Yol (w, 2z, Z) + c.c. Spdp~ fO b ~ /dw e fwal(w, 2, 2) + c.c.

!
Transformation
of asymptotic state

[He, Lysov, Mitra, Strominger, hep-th/1401.7026;
Strominger, hep-th/1703.05448]
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Soft modes & infinite-dimensional symmetries

Local soft charges

» By construction, soft charge is of similar form

Qsl] ~ [ v fD limw a2, 2) +af(,2,7)]

> For some choices f of f,
Df=0 = Qs[f]=0

» In previous example, soft charge vanishes for four ordinary translations.
D~D?D* = f=Yy, {=0,1.

» Finitely many symmetry transformations preserve particle number, infinitely many require addition of soft particles.

» Addition of soft particles was crucial to obtain infinite-dimensional symmetry

» If restrict to charges with no soft contributions, only find four translational symmetries.

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]
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ap RS

S

* Scattering problem is constrained by infinite-dimensional symmetries
_l_ I * Constraints (i.e. Ward identities) are the soft theorems
dKed Way * Reveals the essential role played by soft modes

p O[ N 'tS : * Can identify infinite-dimensional symmetries with asy@ptotic symmetries
obeying an antipodal matching condition i

* Resolves puzzle as to whether the scattering problem is well-posed
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Soft modes & degenerate vacua

» Previously found inclusion of soft charge was essential to obtain infinite-dimensional symmetry
» What is the physical significance?

Qs(z,2) ~ — lim w [a+ (wz(z,2)) + al (wz(z, z))]

o, w—0
Action on vacuum state:
Qs(z, 2)|) = |)

» Characterize vacua by eigenvalue under Qg

Qs(z,2)|o) = azz|a)
Action on asymptotic states:

out) — Oc,’OUtIOU.t; o

e 0ut>

QS(Z:! Z)lOI'“:; 04

[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448;
Choi, Kol, Akhoury, hep-th/1708.05717;
Choi, Akhoury, hep-th/1712.04551]
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Soft modes & degenerate vacua

Ward identity:

—(out; a*"'|[Qs, S]lin; ™) = (out; «*"|[Qu, S]|in; ™)

T
(! — a°")(out; o®"t|in; o) = Z Sk (2, Z)(out; a°%* |in; &™)

zZ zZ
k=1

O,
Options:

n
font; 0 m; %) = (@ — a2 = 3" 84(z.
b—

» Assuming a unique vacuum state, symmetry constraint implies all S-matrix elements vanish.
» Allowing for vacuum transitions, the shift between “in” and “out’ vacua is determined by the soft factor.
[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448;

Choi, Kol, Akhoury, hep-th/1708.05717;
Choi, Akhoury, hep-th/1712.04551]
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[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448;
Choi, Kol, Akhoury, hep-th/1708.05717;

BMS vacua and Fadeev-Kulish states oo s

BMS vacuum states
Rs(z, 2)|a) = az:|a)

» Qg is zero-frequency component of the radiative gravitational field

Qs(z,z) ~ — 1111})@? [a+ (wi(z, 2) + al (wi(z, z))} ~ fdu Geplvsnk s 20 7 )
w—r ~ -

N.ZZ
» Eigenstates of Q¢ are coherent states of gravitons with (classical) amplitude «

|a:> -~ ef azz(a_—ajr)—l—c.c.m) -~ ef azzhgg+c.c.‘0>

9,

» Such states were previously studied by Fadeev and Kulish for the purpose of curing infrared divergences
which do set scattering amplitudes to zero!

Takeaway:

» Symmetry constraints provide a reason for why exclusive scattering amplitudes are IR divergent
but states dressed by soft gravitons are not.

Physical intuition:

» Gravitational radiation is emitted in any non-trivial classical scattering process.
» Symmetry constraint in quantum scattering process requires the soft sector to agree with classical result.
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IELGENENR

* Symmetry constraints imply the is infinitely degenerate.
* Generic scattering process induce transitions between inequivalent vacua.

* Infrared divergences arise when to account for vacuum transitions.

Outlook thus far...

* Resolved concerns regarding the scattering problem arising from
* Independent asymptotic symmetries at 7* and T

* Infrared divergences in scattering amplitudes

* Constraints implied by asymptotic symmetries are soft theorems
* New soft theorems [Cachazo & Strominger, hep-th/1404.4091]

* Corrections to soft theorems [Elvang, Jones, Naculich, hep-th/1611.07534; Mitra & Laddha, 1709.03850]
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Celestial Amplitudes

Scattering amplitudes of boost (not
translation) eigenstates

Single particle states transform like primary
operators in 2D CFT

Subleading soft graviton theorem is Ward
igentity for 2D stress tensor
Lorentz symmetries enhanced to Virasoro

Holography

Does there exist an intrinsically defined 2D
theory whose correlation functions are the
4D scattering amplitudes?

How far can the symmetries take us?

[de Boer & Solodukhin, hep-th/0303006; Pasterski, Shao, Strominger, hep-th/1701.00049]

Pirsa: 20060053

Page 19/25




Construction of Celestial Amplitudes (continued)

|p38>:|w727278>1 pu(wazaz): 1-'-227 (1—’_2272—’_57_?;(2_2)?1_22)
» Under Lorentz transformations,
py N A,Ltvppj W _ w ICZ £ dl2 = Seek to trade (UfOr

1+ 22 1422 SL(2,C)-invariant label A

» Boost along p#: p!' — A\pt
» Generated by: K = wd,,
» K is diagonalized by the Mellin transform

Oy {252} 2/ dw W Yw, 2, Z, 5)
0
Celestial Amplitudes

O n 0O
<OA1581 (legl)"'oﬁnﬁn('zn:gn)) — (H] dwk wl?k_l)ASr--Sn(pla"' 7pn)
k=1 0

[Kapec, Mitra, Raclariu, & Strominger, hep-th/1609.00282; Cheung, de la Fuente & Sundrum, hep-th/1609.00732]
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Symmetry Constraints on Celestial Amplitudes

» What is the fate of the asymptotic symmetry constraints (i.e. soft theorems) in this basis?

1. Soft charges

o Conformally soft theorems characterize poles in conformal dimension

2. Hard charges
o Subleading soft gravitons generate conformal transformations
= act within a conformal family (labelled by A and s)
o Leading/subsubleading theorems shift conformal dimensions
= relate different conformal families
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Conformally soft theorems

Conventional soft theorems

» Statements about the universality of coefficients S@) In an expansion in energy of an external graviton

®¢

A.,1+1(w’2’2) = ( S(O (Z 7) —|—Sl)(7 7)—’-(.05(2 (7 Z)) A, +-

Property of Mellin transforms

» Coefficients of an asymptotic expansion map to residues of poles in Mellin space

flw)=wlag+a; +wag+---, a,= lim (A+n-— 1)f dw w7 f(w).
A——ntl 0

Soft operators
— . t = o o "
Leading: lim wa (w, z,Z)|0) = Alg]l(ﬁ 1)Oa (2, 2)

Subleading: iimo AOAa(z,2) Subsubleading:alim 1(A +1)Oa(z, 2)
— ——

» Asymptotic symmetries constrain residues of poles in conformal weights

[Cheung, de la Fuente & Sundrum, 1609.00732; Fan, Fotopoulos & Taylor, 1903.01676; MP, Raclariu & Strominger, 1904.10831;
Nandan, Schreiber, Volovich & Zlotnikov, 1904.10940; Adamo, Mason, & Sharma, 1905.09224; Puhm, 1905.09799]
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Translations on the celestial sphere

Translations in momentum space
Olw, z,2) = w|w, 2, Z)

Translations in boost eigenstate space

00a(z, 2) 2[ dw W 16|w, z, Z) 2] dw WP wlw, 2,2) = Oayi(z, 2)
0 0

» Momentum conservation of celestial amplitudes is captured by shifts in dimension

[Donnay, Puhm, & Strominger, hep-th/1810.05219; Stieberger & Taylor, hep-th/1812.01080]
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Summary ?MS
=

' 3
* Asymptotic symmetries imply an infinite '%]\ \ ./
number of constraints on scattering w

problem.
* The constraints can be identified with soft
the_orems in the standard momentum \ OUthOk
basis.
S
* Infrared divergences arise in scattering * Scattering problem remains a well-
amplitudes between states that violate ‘ \ posed and informative question in
the symmetry constraints. — guantum gravity.

* Asymptotic symmetries constrain OPE 5\5" ™me * The full extent to which asymptotic
(collinear limits) of celestial amplitudes. symmetries constrain the scattering

\ \ problem (recast in terms of celestial
\ amplitudes) is yet to be determined.

O
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OPE coefficients from symmetry

Constraints from translations

JOA = Op 1 O, (21)O0n,(22) ~ Cay,a,(212)0A, +a5+n(22)

= Recursion relation:
Cas it 8, T 08g Agtd =0 g A5

+ additional recursion relation from subsubleading soft graviton symmetry

= Graviton-graviton OPE coefficient

z
Gzl (Z1,51)GZ2 (z1,22) ~ B(A1 —1,As — 1)Z£GZH—A2 (22, Z2)
12

['()'(y)

B(z,y) = Tz + )

» Relations among celestial amplitudes without any soft insertions!
0,

[MP, Raclariu, Strominger & Yuan, hep-th 1910.07424]

Poles in dimension!
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