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Abstract: Given a vector in arepresentation, can it be distinguished from zero by an invariant polynomial? This classical question in invariant theory
relates to a diverse set of problems in mathematics and computer science. In quantum information, it captures the quantum marginal problem and
recent bounds on tensor ranks. We will see that the general question can be usefully thought of as an optimization problem and discuss how this
perspective leads to efficient algorithms for solving it.

& nbsp;

Pirsa: 20060049 Page 1/24



9 = gradflow waterloo.pdf (page 1 of 45)

Tensors, invariants, and optimization l

Michael Walter

o UNIVERSITY OF AMSTERDAM
N#WO

Perimeter Institute, June 2020

based on joint works with Peter Biirgisser, Cole Franks, Ankit Garg,
Rafael Oliveira, Avi Wigderson (ITCS'18, FOCS'18, FOCS'19)

20060049 Page 2/24
179y



e ® = gradflow_waterloo.pdf (page 2 of 45)

Overview

There are geometric and algebraic problems, originating in invariant theory,
that are amenable to numerical optimization algorithms over groups.

Marginal & scaling problems| <— [Null cone problems

These capture a wide range of surprising applications — from algebra and
analysis to computer science and quantum information.

Plan for today:
@ Introduction to the framework
@ Panorama of applications
© Algorithmic solution

Optimization algorithms for problems with natural symmetries!
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Symmetries and group actions

Group actions mathematically model symmetries and equivalence.

Problem: How can we algorithmically and efficiently check equivalence? J

Interesting (and often difficult) problems with many applications:

» no polynomial-time algorithms are known for graph isomorphism

» matrices equivalent under row and column operations iff equal rank;
but tensor rank is NP-hard

» derandomizing PIT implies circuit lower bounds [Kabanets-Impagliazzo]

» computing normal forms, describing moduli spaces and invariants. . .

oosVYe will see many more examples in a moment. .. bage 424
3723
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Setup and orbit problems

Group G C GL,(C), such as GL,, SL,, or T, = (C*)"
Action on V = C™ by linear transformations
Orbits Gv ={g-v : g € G} and their closures Gv

Example: G =C*, V =C?
(i)

g'(;)z(g‘%y) ﬁ"-‘* [

Orbit problems:
» Given v and w, are they in the same orbit? That is, is Gv = Gw?
» Robust versions: v € Gw? IGv N Gw # ()?
» Null cone problem: 0 € Gv?

oosmlassical problems. The last two can be solved via invariants. Are there more efficient ways'{aage e
4 /23
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Example: Conjugation

G=GL, V=Mat, g-X=gXg

» X, Y are in same orbit iff same Jordan normal form
» X, Y have intersecting orbit closures iff same eigenvalues

» X is in null cone iff nilpotent

00slB: The last two problems have a meaningful approximate version! page 6124
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Orbit problems and optimization

For concreteness, focus on the null cone problem: Is 0 € Gv?

We can translate this into an optimization problem on the group G:

infgegllg - vl =7

First-order condition? Clearly, the gradient at any minimizer g is zero.
Remarkably, thIS IS a|50 SUfﬁCientl [Kempf-Ness]

Thus, we can equivalently minimize the gradient.
Moreover, in many applications the gradient is object of primary interest!
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Summary so far

G C GL, acting linearly on V =C™

Null cone problem: Given v, is 0 € Gv? |

...and its relaxations:

Norm minimizat'&gn problem: Given v, find g € G s.th. |

Scaling problem: Given v € V, find g € G s.th. V||g- v

» The last two problems are dual, and either can solve null cone!
» But they also provide path to other orbit problems.

Useful model problems. Plausibly solvable in polynomial time, but rich
enough to have interesting applications. Let us look at some. ..
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A panorama of applications

54
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Example: Matrix scaling (raking, IPFP, ...)

Let X be matrix with nonnegative entries. A scaling of X is a matrix

d1 b1
Y= X . [31,.-.,bn>’0).
an bﬂ‘

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling (Geometry): Given X, 3 (approximately) d.s. scalings?

Permanent (Algebra): .. .iff per(X) > 0!
» .. .iff J bipartite perfect matching in support of X
» can be decided in polynomial time
» find scalings by alternatingly fixing rows & columns ® [Sinkhorn]

Joos@nnections to statistics, complexity, combinatorics, geometry, numerics, . .. page 10/24
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Example: Sinkhorn algorithm

12fim}vs%%fix_co}!sll_>_>2lt
4 0 1 0 0 = n 2t—1

2t

after t steps. Why does it work? Permanent increases monotonically — can
be used to control convergence:

i
4

I
| T ——— TERERRSE | 5 ALLEISEE . | ] P L A L R T Y e
50 100 150 50 100 150 200

permanent distance to doubly stochastic

State-of-the-art algorithms directly optimize the norm square (in disguise).
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Example: Matrix scaling (raking, IPFP, ...)

Let X be matrix with nonnegative entries. A scaling of X is a matrix

d1 b1
Y= X . [31,.-.,bn>’0).
an bﬂ‘

A matrix is called doubly stochastic (d.s.) if row & column sums are 1.

Matrix scaling (Geometry): Given X, 3 (approximately) d.s. scalings?

Pe . f A ] A" i~ f2wrh ~l

|V =Mat, G=T,xT, (g,8)v=_gve.

Then, V||g - v||*> =¢row sums, column sums) of X; = |v;[°.

Tt o T’

Joos@nnections to statistics, complexity, combinatorics, geometry, numerics, . .. page 12/24
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Example: Operator scaling and non-commutative PIT

Let T(p) = Y_; XipX; be a CP map. A scaling of T is of the form
S(p) = AT(BpB"AT  (A,BeGL,)

Say T is quantum doubly stochasticif T(I) = TT(/) = I.

Operator scaling: Given T, 3 approximately quantum d.s. scalings? '

Polynomial identity testing: ... iff 3 matrich Yk s.th. det ) Y ® X # 0.

» natural iterative algorithm: alternatingly make unital and
trace-preserving [Gurvits]

» can solve in deterministic polynomial time [Garg et al, Ivanyos et al]

When Y/ restricted to scalars? Major open problem in TCS!

20060049 Page 13/24
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Applications and connections

Invariant theory: Null cone & orbit closure intersection, moment polytopes
Analysis: Brascamp-Lieb inequalities, solutionyof Paulsen’s problem

Symplectic geometry: Horn's problem 3 A+ B = C with spectrum «, 3, y?
Combinatorics: Positivity of Littlewood-Richardson coefficients

Statistics: MLE in Gaussian models, Tyler's M-approximation
Optimization: Efficient algorithms for classes of quadratic equations

Computational complexity: Polynomial identity testing, tensor ranks
Quantum information: Marginal problems, entanglement transformations

All these are special cases of a general class of problems! We now focus on
one scenario that is in many ways ‘representative’

20060049 Page 14/24
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Quantum states and marginals

Pure quantum state of d particles is described by unit-norm tensor:

XevV=C"®---C"™ K]@@ @\

State of individual particles described by density matrices p1,..., p4:

tl‘[lel] = <X|H1®I®...®I|X) VHl
| " GODEL,
ESCHER,

~ BACH:

Quantum marginal problem: Which py,...,pq are
consistent with a global pure state X7

Answer only depends on the eigenvalues A; of p;!

20060049 Page 15/24
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Tensor scaling and SLOCC

A scaling of X is a tensor of the form

[
{
]
3

Y=A1®...0A3)X [(A; € GL,,) M

A

T

> state that can be obtained by SLOCC (postselected local operations
& classical communication)

» X constrains the entanglement class

Tensor scaling problem: Which p1,..., pq arise from scaling of given X? J

» e.g. forb; o< I, each system maximally entangled with rest

(= locally maximally mixed = quantum version of stochastic tensor)

» again, answer only depends on eigenvalues A; of p;

20060049 Page 16/24
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Tensor scaling and entanglement polytopes

Thus, answer to tensor scaling problem is encoded by:

AlX] = {()\1, ..., Ag) for scalings of X (and limits) } C R9" j

e.g., for three qubits, GHZ = |000) + [111) and
W = [100) + [010) + |001):

In general, always convex polytopes: [Kirwan, Mumford]
> enCOde |Oca| info abOUt entanglement [W-Christandl-Doran-Gross, Sawicki et al]
» encode recent notions of tensor ranks [Christand! et al, Derksen]

However, explicit description intractable.  [Berenstein-Sjamaar, Kiyachko, Ressayre, Vergne-W.]
Exponential number of vertices and facets!

We provide algorithmic solution!

20060049 Page 17/24
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Geodesic optimization algorithms

20060049 Page 18/24
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The Algorithm

Given state X, want to find scaling Y with desired marginals — whenever
possible. For simplicity, uniform marginals (p; o</, Aj o< 1) and d = 3.

Algorithm: Start with Y =X. Fort=1,...,T:
Compute marginals p1, p2, p3 of Y. If e-close to uniform, stop.
Otherwise, replace Y by (e”“"’f Re P2 Qe e3) )Y. Xg = traceless part

r

1 = suitable step size

Algorithm finds Y = (A1 ® Ay ® A3)X with marginals e-close to uniform
within T = poly(%, input size) steps.

> generalizes to arbitrary A;, d > 3, (anti)symmetric tensors, MPS, ...
» can run on quantum computer (but how well? ®)
> solve quantum marginal problem by using random X

20060049 . . 2 . Page 19/24
. algorithm by Verstraete et al which we analyzed in prior work 18 / 23
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Why does it work?

“Otherwise, replace Y by (e ™MP1 ® e P2 © e MP3)Y " l

Consider the problem of minimizing the norm
N(A1, A2, A3) = ||(A1 ® A2 ® A3)X||  (A; € SLy,)

Its derivative in direction given by traceless Hy, H», H3 is

dr—oN (et etz et3) — tr[pSHy] + tr[pSHa] + tr[p2 Hal.

Therefore, the gradient can be identified with VN = (p?, p9, p%).

» Algorithm implements geodesic gradient descent. ..
» ...and minimizing the gradient makes the marginals uniform! ®

How to make quantitative? What is the big picture?

20060049 Page 20/24
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Non-commutative optimization

In general, consider N(g) = ||g - X]|.

We discussed that the following optimization problems are equivalent:

infge(;@gN(g) — inng(; ”VN(g)” [Kempf-Ness]
Gx.

» primal: norm minimization, dual: scaling problem >

» non-commutative version of linear programming duality K

We develop quantitative duality theory and 1st & 2nd order methods. |

All examples from introduction fall into this framework.
Numerical algorithms that solve algebraic problems!

JooskXerything works for general actions of reductive G. Norm is log-convex along geodesics. page 21/24
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Geodesic convexity

Why does the duality hold? Consider geodesics g; = etfg in the group G.

3 K e
/——.—9—\‘\

Proposition: N(g) = ||g - v|| satisfies along these geodesics:
@ convexity: 32_,N(g:) =0
@ smoothness: 92_,N(gt) < 2C?||H||%

C is typically small, upper-bounded by degree of action.

Smoothness implies that

N(et'g) < N(g) + VN(g) - H + C2||H||2.

Thus, gradient descent makes progress if steps not too large!

20060049
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Analysis of Algorithm
“Unless e-close to uniform, replace Y by (e MPI ®@ e P2 @ e MP3)Y "

To obtain rigorous algorithm, show:

> progress in each step: || Ynew|| < (1 —c1€)||Y]|
» a priori lower bound: infye—1||(A1 ® Ay @ A3)X|| = &

Then, (1 —c1e)T > ¢ Bbunds the number of steps T.

The first point follows from smoothness, as just discussed.

For the second, construct ‘explicit’ invariants with ‘small’ coefficients, so
that P(X) # 0 implies bound in terms of bitsize of X.

20060049 Page 23/24
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Marginal & scaling problems

T duality

Norm minimization & null cone

1
Effective algorithms for large class of optimization problems over groups,

incl. quantum marginal and tensor scaling problems. Based on geodesic
convex optimization and geometric invariant theory.

Many exciting directions:
» Polynomial-time algorithms in all cases?
» Better tools for geodesic optimization? Quantum algorithms?
» Tensors in quantum information are often special. Implications?
» (Can we tackle other problems with natural symmetries?

Thank you for your attention!
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