Title: Fundamental local equivalences in quantum geometric Langlands

Speakers: Gurbir Dhillon

Collection: Geometric Representation Theory

Date: June 22, 2020 - 3:15 PM

URL: http://pirsa.org/20060038

Abstract: In quantum geometric Langlands, the Satake equivalence plays a less prominent role than in the classical theory. Gaitsgory--Lurie proposed a conjectural substitute, later termed the fundamental local equivalence, relating categories of arc-integrable Kac--Moody representations and Whittaker D-modules on the affine Grassmannian. With a few exceptions, we verified this conjecture non-factorizably, as well as its extension to the affine flag variety. This is a report on joint work with Justin Campbell and Sam Raskin.

Pirsa: 20060038 Page 1/18

Fundamental local equivalences in quantum geometric Langlands

Gurbir Dhillon Stanford University

Perimeter-MPI Geometric Representation Theory conference

June 22, 2020

Pirsa: 20060038 Page 2/18

Overview

- Gaitsgory and Lurie conjectured deformations of the geometric Satake equivalence termed *fundamental local equivalences*
- Under a mild restriction on the deformation parameter, we proved these conjectures non-factorizably, in joint work with J. Campbell and S. Raskin
- Has arithmetic and representation-theoretic applications which are work in progress.

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

2 / 17

Pirsa: 20060038

Motivation

- Everything over k alg. closed of characteristic zero
- X smooth projective curve
- *G* reductive group
- Bun_G moduli stack of G-bundles on X
- Given $x \in X(k)$, have completed local ring and its fraction field

 ${\mathfrak O}$ and ${\mathfrak K}$

and corresponding arc and loop groups

 $G(\mathfrak{O})$ and $G(\mathfrak{K})$.

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

3 / 17

Pirsa: 20060038 Page 4/18

Motivation

Hecke correspondences give action

$$D(G(\mathfrak{O})\backslash G(\mathfrak{K})/G(\mathfrak{O}))\otimes D(Bun_G)\to D(Bun_G).$$

• Appearance of Langlands dual group \check{G} :

Theorem

(Lusztig-Drinfeld-Ginzburg-Mirkovic-Vilonen) There is a canonical (up to signs symmetric) monoidal equivalence of abelian categories

$$D(G(\mathfrak{O})\backslash G(\mathfrak{K})/G(\mathfrak{O}))^{\mathfrak{O}}\simeq (\operatorname{\mathsf{Rep}}\check{G})^{\mathfrak{O}}.$$

• Count parameters - double cosets on the LHS are indexed by dominant coweights for G, i.e. dominant weights for \check{G} .

4ロト 4回 4 三 ト 4 三 り 9 0

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

Motivation

Quantum Langlands concerns the deformation

D-modules on $Bun_G \rightsquigarrow \text{twisted } D$ -modules on Bun_G .

Parameters given by

$$\operatorname{\mathsf{Sym}}^2(\mathfrak{g}^*)^G o \operatorname{\mathsf{Pic}}(\mathit{Bun}_G) \underset{\mathbb{Z}}{\otimes} k$$

$$\kappa \leadsto D_{\kappa}(Bun_G)$$

- Basic question find helpful deformation of Satake isomorphism
- Basic problem twisted spherical Hecke category

$$D_{\kappa}(G(\mathfrak{O})\backslash G(\mathfrak{K})/G(\mathfrak{O}))$$

is often 'too small', e.g. is supported on trivial coset for κ generic.

4 D > 4 B > 4 B > B 9 9 9

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

- Idea of Gaitsgory-Lurie: fewer Hecke operators, but same number of Whittaker coefficients
- Fix $N \subset B \subset G$ the unipotent radical of a Borel, and a nondegenerate character of conductor zero

$$\psi: \mathcal{N}(\mathcal{K}) \to \mathbb{G}_a$$
.

Theorem

(Frenkel-Gaitsgory-Vilonen) There is a canonical equivalence of abelian categories

$$D(G(\mathfrak{O})\backslash G(\mathfrak{K})/G(\mathfrak{O}))^{\heartsuit} \simeq D(N(\mathfrak{K}), \psi\backslash G(\mathfrak{K})/G(\mathfrak{O}))^{\heartsuit}$$

- Parameter count relevant orbits both indexed by dominant coweights
- One side of quantum deformation:

$$D(G(\mathfrak{O})\backslash G(\mathfrak{K})/G(\mathfrak{O})) \leadsto D_{\kappa}(N(\mathfrak{K}), \psi\backslash G(\mathfrak{K})/G(\mathfrak{O})).$$

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

- ullet Need matching deformation of Rep \check{G}
- ullet Basic idea pass to representations of quantum group, or equivalently Kazhdan–Lusztig category for \check{G}
- Duality for levels via dual inner products on Cartan subalgebras

$$\operatorname{\mathsf{Sym}}^2(\mathfrak{g}^*)^{m{G}}\setminus 0\simeq \operatorname{\mathsf{Sym}}^2(\check{\mathfrak{g}}^*)^{\check{m{G}}}\setminus 0.$$
 $\kappa\leftrightarrow\check{\kappa}$

ullet The level $\check{\kappa}$ yields a Kac-Moody extension

$$0 \to k \to \widehat{\check{\mathfrak{g}}}_{\check{\kappa}} \to \check{\mathfrak{g}}(\mathfrak{K}) \to 0.$$

• Associated Kazhdan–Lusztig category of $\check{G}(\mathfrak{O})$ -integrable modules

$$\widehat{\check{\mathfrak{g}}}_{\check{\kappa}}$$
-mod $\check{\mathsf{G}}^{(0)}$.

◆ロト ◆団 ト ◆ 草 ト ◆ 草 ・ 夕 へ ○

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

Conjecture

(Gaitsgory–Lurie, 2006) For any nonzero κ , there is an equivalence of triangulated categories

$$D_{\kappa}(N(\mathfrak{K}), \psi \backslash G(\mathfrak{K}) / G(\mathfrak{O})) \simeq \widehat{\check{\mathfrak{g}}}_{\check{\kappa}}\operatorname{-mod}^{\check{G}(\mathfrak{O})}.$$

• Count parameters - both sides indexed by dominant coweights for G.

Remark

In fact, they conjectured more, namely an equivalence of factorization categories (informally, compatibilities with moving and colliding multiple points of the curve).

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

• Gaitsgory also conjectured a tamely ramified variant, concerning the lwahori subgroups I and \check{I} .

Conjecture

(Gaitsgory, 2006) For any nonzero κ , there is an equivalence of triangulated categories

$$D_{\kappa}(N(\mathfrak{K}), \psi \backslash G(\mathfrak{K})/I) \simeq \widehat{\check{\mathfrak{g}}}_{\check{\kappa}}\operatorname{-mod}^{\check{I}}.$$

• Analog for $\kappa = 0$:

Theorem

(Arkhipov-Bezrukavnikov) There is an equivalence of triangulated categories

$$D(N(\mathfrak{K}), \psi \backslash G(\mathfrak{K})/I) \simeq \mathsf{QCoh}^{\check{G}}(T^*(\check{G}/\check{B})).$$

(ロ) (団) (目) (目) (目) (O)

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

Results

Theorem

(Campbell-D.-Raskin) If κ satisfies a mild technical hypothesis, then both conjectures are true (the former non-factorizably).

- Hypothesis after restriction to each simple factor of \mathfrak{g} , κ is either irrational or rational with denominator coprime to the bad primes of the root system.
- Hypothesis is vacuous in type A, in general should be removable by a variant of the argument.
- Gaitsgory and collaborators have a rich program which is expected to yield the conjectures with factorization

Gurbir Dhillon Stanford University

Perime Fundamental local equivalences

June 22, 2020

10 / 17

Pirsa: 20060038 Page 11/18

Methods

• In finite type, well known equivalence (Milicic–Soergel, Bezrukavnikov, etc.) between blocks of ① and partial Whittaker sheaves

$$\mathfrak{g}\operatorname{-mod}_{\lambda}^{\mathcal{B}}\simeq D(\mathcal{B}\backslash\mathcal{G}/\mathcal{N},\chi_{\lambda}).$$

• (Aside) Does not arise from usual localization on G/B, but instead

Theorem

(Campbell-D.) Localization yields a fully faithful embedding

$$\mathfrak{g}\operatorname{-mod}_{\lambda}\hookrightarrow D(G/N,\chi_{\lambda}).$$

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

Methods

• Similarly, we relate

$$D_{\kappa}(N(\mathcal{K}), \psi \backslash G(\mathcal{K})/I) \leadsto \text{category } \mathfrak{O} \text{ for } \widehat{\mathfrak{g}}_{\kappa}$$

using categorical representation theory of loop groups.

• Match the combinatorial descriptions provided by Soergel–Fiebig for blocks of $\mathfrak O$ for $\widehat{\mathfrak g}$ at level κ and $\widehat{\check{\mathfrak g}}$ at level $\check{\kappa}$.

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

12 / 17

Pirsa: 20060038 Page 13/18

• Pass from k to \mathbb{F}_q , so

$$\mathbb{O}\cong \mathbb{F}_{q_{\times}}[[t]]$$
 and $\mathbb{K}\cong \mathbb{F}_{q_{\times}}((t))$.

• An unramified principal series representation π of $G(\mathfrak{K})$ has one dimensional spaces of $G(\mathfrak{O})$ invariants and $(N(\mathfrak{K}), \psi)$ coinvariants, hence yields a spherical Whittaker function

$$f_{\pi} \in \operatorname{\mathsf{Fun}}(\mathsf{N}(\mathfrak{K}), \psi \backslash \mathsf{G}(\mathfrak{K}) / \mathsf{G}(\mathfrak{O})).$$

Frenkel–Gaitsgory–Vilonen equivalence

$$Perv(N(\mathcal{K}), \psi \backslash G(\mathcal{K})/G(\mathcal{O})) \simeq \mathsf{Rep}\ \check{G}$$

recovers after trace of Frobenius the *Casselman–Shalika* formula for f_{π} .

◆□▶◆□▶◆臺▶◆臺▶ 臺 からG

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

L3 / 17

- Fix a metaplectic cover $\widetilde{G(\mathcal{K})}$ of $G(\mathcal{K})$
- An unramified principal series representation π of $G(\mathcal{K})$ has a line of $G(\mathfrak{O})$ invariants, but in general a greater than one dimensional space of $(N(\mathcal{K}), \psi)$ coinvariants, hence yields a vector space of spherical Whittaker functions

$$V_{\pi} \subset \operatorname{\mathsf{Fun}}(N(\mathfrak{K}), \psi \backslash \widetilde{G(\mathfrak{K})} / G(\mathfrak{O}))$$

(Kubota, Matsumoto, Kazhdan–Patterson, Brubaker, Bump, Chinta, Friedberg, Gunnells, McNamara, Lysenko, etc.)

 A variant of our proof of the tamely ramified conjecture should yield a description of

$$Perv(N(\mathfrak{K}), \psi \backslash \widetilde{G(\mathfrak{K})} / G(\mathfrak{O}))$$

in terms of the Kazhdan–Lusztig category, and after trace of Frobenius a metaplectic Cassleman–Shalika formula for a canonical basis for V_{π} .

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

June 22, 2020

- ullet Return to k alg closed of characteristic 0
- ullet To ${\mathfrak g}$ and κ one may attach an (affine) W-algebra

$$W_{\kappa}$$
.

 Problem (Frenkel–Kac–Wakimoto, Arakawa, etc.) - determine behavior of the obtained functor

$$C^{\frac{\infty}{2}+*}(\mathfrak{n}(\mathfrak{K}), -\otimes k_{\psi}): \widehat{\mathfrak{g}}_{\kappa}\operatorname{-mod}' o \mathcal{W}_{\kappa}\operatorname{-mod}.$$

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

lune 22, 2020

This functor fits into a family of functors

$$D_{\kappa}(N(\mathfrak{K}), \psi \backslash G(\mathfrak{K})/I) \otimes \widehat{\mathfrak{g}}_{\kappa}\operatorname{-mod}^I \to \mathcal{W}_{\kappa}\operatorname{-mod}.$$

Similar arguments to those above yield a description of

$$D_{\kappa}(N(\mathfrak{K}), \psi \backslash G(\mathfrak{K})/I) \otimes \widehat{\mathfrak{g}}_{\kappa}\operatorname{-mod}^I o \mathcal{W}_{\kappa}\operatorname{-mod}.$$

in terms of 'two sided antispherical quotients' of the affine Hecke category (at least for κ negative).

 Should imply a conjecture of Gaitsgory on the compatibility of the above pairing with Feigin-Frenkel duality and the FLE

4日 1 4日 1 4日 1 4日 1 990

Gurbir Dhillon Stanford University

(Perime

Fundamental local equivalences

une 22, 2020

Pirsa: 20060038 Page 18/18