Title: Conjectures on p-cells, tilting modules, and nilpotent orbits

Speakers: Pramod Achar

Collection: Geometric Representation Theory

Date: June 26, 2020 - 12:00 PM

URL: http://pirsa.org/20060036

Abstract: For quantum groups at a root of unity, there is a web of theorems (due to Bezrukavnikov and Ostrik, and relying on work of Lusztig) connecting the following topics: (i) tilting modules; (ii) vector bundles on nilpotent orbits; and (iii) Kazhdan–Lusztig cells in the affine Weyl group. In this talk, I will review these results, and I will explain a (partly conjectural) analogous picture for reductive algebraic groups over fields of positive characteristic, inspired by a conjecture of Humphreys. This is joint work with W. Hardesty and S. Riche.

Pirsa: 20060036 Page 1/16

Pirsa: 20060036 Page 2/16

Q Search

Notation

Consider two cases simultaneously:

Quantum case

 $k = \mathbb{C}$

 $G = \text{quantum group over } \mathbb{k} \text{ at } \ell\text{-th root of unity}$ Assume: $\ell > h = \text{Coxeter number}$

Reductive group case case

 $\mathbb{k} = \text{algebraically closed field of char. } p > 0$

G = connected reductive group over kAssume: p > h = Coxeter number

Both cases:

X = weight lattice, $X^+ =$ dominant weights for G

 $T(\lambda), \lambda \in \mathbf{X}^+$: indecomposable tilting module of highest weight λ Tilt(G) = the additive \otimes -category of tilting G-modules

A \otimes -ideal is a full additive subcategory $I \subset Tilt(G)$ such that:

- ▶ For any $X \in Tilt(G)$ and $Y \in I$, we have $X \otimes Y \in I$.
- ▶ I is closed under ⊕ and direct summands

The **principal** \otimes -ideal generated by $\mathsf{T}(\lambda)$ is the smallest \otimes -ideal containing $\mathsf{T}(\lambda)$.

2/15

Pirsa: 20060036

Warm-up: tensor ideals of tilting modules for SL₂

Problem

Classify principal \otimes -ideals in $\mathrm{Tilt}(G)$ for $G = \mathsf{SL}_2$ (either quantum or reductive case)

Dominant weights: $\mathbf{X}^+ = \mathbb{Z}_{\geq 0}$.

- ▶ T(0) = triv rep, $T(1) = \text{defining rep on } \mathbb{k}^2$
- ▶ All summands of $\mathsf{T}(1)^{\otimes m}$ are tilting
- ▶ T(m) occurs as summand of $T(1)^{\otimes m}$

Specific cases

- 0. $SL_2(\mathbb{C})$: every rep completely reducible & tilting. T(m) = irreducible rep of highest weight m.
 - Only 1 principal ⊗-ideal (the unit ideal = the whole category Tilt(G))
 - ▶ Proof: $\forall m$, $\mathsf{T}(m) \otimes \mathsf{T}(m)^*$ contains the triv module $\mathsf{T}(0)$ as a direct summand

- 1. (Quantum case) Quantum SL_2 at ℓ th root of 1: Exactly 2 principal \otimes -ideals:
 - ▶ For $0 \le m \le \ell 2$, $\langle \mathsf{T}(m) \rangle_{\otimes} = \mathsf{the}$ unit ideal.
 - $ightharpoonup \forall m \geq \ell-1, \ \langle \mathsf{T}(m) \rangle_{\otimes} = \langle \mathsf{T}(\ell-1) \rangle_{\otimes}$
- 2. (Reductive group case) $SL_2(k)$, chark = p > 2: Infinitely many principal \otimes -ideals
 - ▶ For $m \in \mathbb{Z}_{>0}$, let

$$u(m) = \min\{j \mid m < p^{j+1} - 1\}$$
= largest power of p in
the p -adic expansion of $m+1$

Based rings

A =a commutative ring (usually \mathbb{Z} or $\mathbb{Z}[v, v^{-1}]$) R =an A-algebra, free over A, with A-basis \mathcal{B}

Defn

A **based ideal** is an ideal $I \subset R$ spanned by $I \cap \mathcal{B}$. The **principal based ideal** gen by $x \in R$ is the smallest based ideal containing x.

Example 1

 $K_0(\mathrm{Tilt}(\mathsf{G})) = \mathsf{split}$ Grothendieck group of $\mathrm{Tilt}(\mathsf{G})$. Basis: $\mathcal{B} = \{ [\mathsf{T}(\lambda)] \mid \lambda \in \mathbf{X}^+ \}$.

 $\begin{array}{ccc} \text{principal based} & \overset{\sim}{\longleftrightarrow} & \text{principal} \\ \text{ideals in } \mathcal{K}_0(\mathrm{Tilt}(\mathsf{G})) & \overset{\sim}{\longleftrightarrow} & \otimes\text{-ideals in } \mathrm{Tilt}(\mathsf{G}) \end{array}$

Example 2

 $\mathcal{H}_{\mathrm{ext}} = \mathsf{extended}$ affine Hecke algebra over $\mathbb{Z}[v, v^{-1}]$

▶ Basis: "standard basis" $\{T_w : w \in W_{\text{ext}}\}$ The unit ideal is the unique based ideal.

Example 2 continued

► Basis: Kazhdan–Lusztig (canonical) basis:

(left, right, 2-sided)principal based ideals = (left, right, 2-sided) KL-cells

► Basis: *p*-canonical basis:

 $\frac{\text{(left, right, 2-sided)}}{\text{principal based ideals}} = \frac{\text{(left, right, 2-sided)}}{p\text{-cells}}$

Example 3

 $\mathcal{M}_{\mathrm{asph}} = (\mathrm{sgn}) \otimes_{\mathcal{H}_{\mathrm{f}}} \mathcal{H}_{\mathrm{ext}} =$ antispherical module Basis: inherits KL- and p-canonical bases from $\mathcal{H}_{\mathrm{ext}}$

 $\begin{array}{c} \text{principal} \\ \text{based submodules} \end{array} = \begin{array}{c} \mathbf{I}_{\text{antispherical}} \\ \text{KL- or } p\text{-cells} \end{array}$

Tensor ideals and antispherical cells

Thm (Ostrik)

In the quantum case, there is a bijection

$$\begin{cases} \text{principal} \\ \otimes \text{-ideals in } \operatorname{Tilt}(\mathsf{G}) \end{cases} \overset{\sim}{\longleftrightarrow} \begin{cases} \text{antispherical} \\ \text{KL-cells} \end{cases} \qquad \begin{cases} \text{principal} \\ \otimes \text{-ideals in } \operatorname{Tilt}(\mathsf{G}) \end{cases} \overset{\sim}{\longleftrightarrow} \begin{cases} \text{antispherical} \\ p\text{-cells} \end{cases}$$

Thm (A.-Hardesty-Riche)

In the reductive group case, there is a bijection

$$\left\{egin{array}{l} \mathsf{principal} \ \otimes \mathsf{-ideals} \ \mathsf{in} \ \mathrm{Tilt}(\mathsf{G}) \end{array}
ight\} \stackrel{\sim}{\longleftrightarrow} \left\{egin{array}{l} \mathsf{antispherical} \ p\mathsf{-cells} \end{array}
ight\}$$

Proof sketch

Define an explicit map

$$\alpha: K_0(\mathrm{Tilt}(\mathsf{G})) \to \mathcal{M}_{\mathrm{asph}}|_{\nu=1}$$

(Roughly, α is the "principal block part of the character formula.")

To show: α sends based ideals to based submodules. Use:

in the
$$\begin{cases} \text{quantum [Soergel]} \\ \text{reductive group [A.-Makisumi-Riche-Williamson]} \end{cases} \quad \text{case, the } \begin{cases} \text{KL-basis} \\ p\text{-canonical basis} \end{cases} \quad \text{for } \mathcal{M}_{asph}$$

controls characters of tilting modules in the principal block of Rep(G).

How many antispherical cells are there?

Quantum case

 ${\bf G}=$ reductive gp/ ${\mathbb C}$ with same root datum as G ${\mathcal N}=$ nilpotent cone in ${\rm Lie}({\bf G})$

 ${\it G}$ acts with finitely many orbits on ${\cal N}$

Thm (Lusztig)

$$\left\{ \begin{array}{c} \mathsf{antispherical} \\ \mathsf{KL\text{-cells}} \end{array} \right\} \stackrel{\sim}{\longleftrightarrow} \left\{ \begin{array}{c} \mathsf{nilpotent} \\ \mathsf{orbits} \end{array} \right\}$$

Reductive group case

 $G = Frobenius twist of G (i.e. <math>G^{(1)}$)

 $\mathcal{N} = \text{nilpotent cone in Lie}(\boldsymbol{G})$

 ${\it G}$ acts with finitely many orbits on ${\cal N}$

- ► Infinitely many ⊗-ideals
- ▶ Infinitely many antispherical right p-cells

Example: Quantum SL₂

To do:

- ▶ Quantum case: fill in bottom arrow
- ► Reductive group case: everything

7/15

Pirsa: 20060036 Page 8/16

Q Search

g-cohomology

Quantum case

g = small quantum group $\mathcal{N} = \text{nilpotent cone in Lie}(\boldsymbol{G})$

Thm (Ginzburg-Kumar)

There is a G-equivariant ring isomorphism

$$\operatorname{Ext}_g^{\bullet}(\mathbb{C},\mathbb{C})=\mathbb{C}[\mathcal{N}].$$

Reductive group case

g = first Frobenius kernel

 $\mathcal{N} = \text{nilpotent cone in Lie}(\mathbf{G})$

Thm (Andersen–Jantzen, Friedlander–Parshall)

There is a G-equivariant ring isomorphism

$$\operatorname{Ext}_g^{\bullet}(\Bbbk, \Bbbk) = \Bbbk[\mathcal{N}].$$

Defn

For any G-module M, its g-cohomology is

$$\mathsf{H}^{ullet}_{\mathsf{g}}(M) := \mathrm{Ext}^{ullet}_{\mathsf{g}}(\Bbbk, M).$$

This is naturally a $\begin{cases} \mathbb{k}[\mathcal{N}]\text{-module, with a compatible } \mathbf{G}\text{-action} \\ \text{a } \mathbf{G}\text{-equivariant coherent sheaf on } \mathcal{N}. \end{cases}$

g-cohomology of tilting G-modules

Recall: for any G-module M, $H_g^{\bullet}(M) \in \operatorname{Coh}^{\boldsymbol{G}}(\mathcal{N})$.

Prop

- 1. $H_g^{\bullet}(T(\lambda)) = 0$ unless $\lambda = w \bullet_{\ell} 0$ for w min'l coset representative for $W_f \setminus W_{\text{ext}} / W_f$.
- 2. Every principal \otimes -ideal has a generator $T(\lambda)$ with $H_g^{\bullet}(T(\lambda)) \neq 0$.

For the remaining parts, assume $H_g^{\bullet}(T(\lambda)) \neq 0$:

- 3. supp $H_g^{\bullet}(T(\lambda))$ is the closure of 1 nilpotent orbit
- 4. If $\langle \mathsf{T}(\lambda) \rangle_{\otimes} = \langle \mathsf{T}(\mu) \rangle_{\otimes}$, then $\operatorname{supp} \mathsf{H}_{\mathsf{g}}^{\bullet}(\mathsf{T}(\lambda)) = \operatorname{supp} \mathsf{H}_{\mathsf{g}}^{\bullet}(\mathsf{T}(\mu))$.

Get a map

 $\{\text{principal} \otimes \text{-ideals in } \operatorname{Tilt}(\mathsf{G})\} \rightarrow \{\text{nilpotent orbits}\}$

Conj (Humphreys), Thm (Bezrukavnikov)

In the quantum case, the following diagram commutes:

Humphreys conjecture

Quantum case

Thm (Bezrukavnikov)

For any quantum group:

Humphreys's formulation: formula for

$$\mathbf{X}^+ \xrightarrow{\text{supp H}_g^{\bullet}(\mathsf{T}(-))} \{\text{nilpotent orbits}\}$$

in terms of KL-cells, not ⊗-ideals.

3 nice bijections

Reductive group case

Thm (Hardesty for SL_n , A.-Hardesty-Riche)

For $G = SL_n(\mathbb{k})$, or if $p \gg 0$:

where the bottom arrow is given by the same formula

$$\mathbf{X}^+ \xrightarrow{\operatorname{supp} \mathsf{H}_{\mathsf{g}}^{\bullet}(\mathsf{T}(-))} \{ \operatorname{nilpotent orbits} \}$$

as in the quantum case (using KL-cells, **not** p-cells).

1 bijection, 1 surjection, 1 missing map

Goal for the rest of this talk: explain (conjecturally) how to improve this picture, get 3 bijections.

10 / 15

Pirsa: 20060036

More on $\operatorname{Coh}^{\boldsymbol{G}}(\mathcal{N})$ in the quantum case

Further study of

Vector bundles on orbits

For $\mathscr{O} \subset \mathcal{N}$, $x \in \mathscr{O}$, recall

$$\operatorname{Coh}^{\boldsymbol{G}}(\mathscr{O}) \cong \operatorname{Rep}(\boldsymbol{G}^{\times}) \quad \supset \quad \operatorname{Rep}(\boldsymbol{G}^{\times}_{\operatorname{red}})$$

$$\boldsymbol{G}_{\mathrm{red}}^{x}=$$
 reductive quotient of $\boldsymbol{G}^{x}.$

A vector bundle $\mathcal{F} \in \mathrm{Coh}^{\boldsymbol{G}}(\mathscr{O})$ is

- irreducible if corresp to irred G^{x} or G_{red}^{x} -rep
- **tilting** if corresp to tilting G_{red}^{x} -rep

Thm (Bezrukavnikov)

In the quantum case:

Assume $H_g^{\bullet}(T(\lambda)) \neq 0$ and supp $H_g^{\bullet}(T(\lambda)) = \overline{\mathscr{O}}$.

 $H_g^{\bullet}(T(\lambda))|_{\mathscr{O}} = \text{an irreducible } G\text{-eqvt vec bdle}$

The assignment $\lambda \mapsto H_g^{\bullet}(\mathsf{T}(\lambda))|_{\mathscr{O}}$ realizes a bijection

$$W_{\mathrm{f}} ackslash W_{\mathrm{ext}} / W_{\mathrm{f}} \overset{\sim}{\longleftrightarrow} \left\{ \left(egin{array}{c} \mathsf{nilp} & \mathsf{irred} \ \mathsf{orbit} \end{array}
ight)
ight\}$$

called the Lusztig-Vogan bijection.

But...

In the reductive group case, the thm above is **false**, already for $G = SL_2$. Instead, examples suggest:

 $H_g^{\bullet}(T(\lambda))|_{\mathscr{O}} = \text{an indecomp tilting } G\text{-eqvt vec bdle}$

11 / 15

Pirsa: 20060036

Tilting vector bundles on nilpotent orbits

Quantum case

Thm (Bezrukavnikov)

Assume $H_{\mathfrak{g}}^{\bullet}(\mathsf{T}(\lambda)) \neq 0$ and supp $H_{\mathfrak{g}}^{\bullet}(\mathsf{T}(\lambda)) = \overline{\mathscr{O}}$.

$$\mathsf{H}^ullet_\mathsf{g}(\mathsf{T}(\lambda))|_\mathscr{O}=\mathsf{an}$$
 irreducible $extit{\emph{G}}\text{-eqvt}$ vec bdle

$$W_{\mathrm{f}} ackslash W_{\mathrm{ext}} / W_{\mathrm{f}} \overset{\sim}{\longleftrightarrow} \left\{ \left(egin{array}{c} \mathsf{nilp} & \mathsf{irred} \ \mathsf{orbit} \end{array}
ight)
ight\}$$

called the Lusztig-Vogan bijection.

Reductive group case

Conj (A.-Hardesty-Riche)

Assume $H^{\bullet}_{\sigma}(\mathsf{T}(\lambda)) \neq 0$ and supp $H^{\bullet}_{\sigma}(\mathsf{T}(\lambda)) = \overline{\mathscr{O}}$.

 $H^{\bullet}_{\sigma}(\mathsf{T}(\lambda))|_{\mathscr{O}}=\mathsf{an}$ indecomp tilting **G**-eqvt vec bdle

The assignment $\lambda \mapsto H_g^{\bullet}(T(\lambda))|_{\mathscr{O}}$ realizes a bijection The assignment $\lambda \mapsto H_g^{\bullet}(T(\lambda))|_{\mathscr{O}}$ realizes a bijection

$$W_{\mathrm{f}} ackslash W_{\mathrm{ext}} / W_{\mathrm{f}} \overset{\sim}{\longleftrightarrow} \left\{ \left(egin{array}{c} \mathsf{nilp} & \mathsf{indecomp\ tilting} \ \mathsf{orbit} \end{array} , \right. \right. \ \, \mathsf{vec\ bdle} \ \,
ight)
ight\}$$

matching the Lusztig-Vogan bijection. Moreover,

$$\langle \mathsf{T}(\lambda) \rangle_{\otimes} = \langle \mathsf{T}(\mu) \rangle_{\otimes} \quad \text{in Tilt(G)}$$

if and only if supp $H_g^{\bullet}(T(\lambda)) = \operatorname{supp} H_g^{\bullet}(T(\mu))$ and

$$\langle \mathsf{H}_\mathsf{g}^{ullet}(\mathsf{T}(\lambda))|_{\mathscr{O}} \rangle_{\otimes} = \langle \mathsf{H}_\mathsf{g}^{ullet}(\mathsf{T}(\mu))|_{\mathscr{O}} \rangle_{\otimes} \quad \text{in } \mathrm{Tilt}^{oldsymbol{G}}(\mathscr{O})$$

True for SL_2 , SL_3 , SO_5 .

 \otimes -ideals

in $\mathrm{Tilt}(G)$

13 / 15

 $\begin{array}{l} \text{nilp orbit } \mathscr{O} \ + \\ \otimes \text{-ideal in } \mathrm{Tilt}^{\textit{\textbf{G}}}(\mathscr{O}) \end{array}$

Pirsa: 20060036 Page 14/16

 $\mathsf{H}^{\bullet}_{\mathsf{g}}(-)|_{\mathscr{O}}$

Tensor categories attached to antispherical KL-cells

Quantum case

 $\mathbf{c} =$ an antispherical KL-cell

Lusztig defined a category

 $\mathscr{A}_{\mathbf{c}}$

as a subquotient of semisimple obj in $Perv_I(Fl)$.

- ▶ monoidal, under "truncated convolution" ⊙
- ▶ categorifies (part of) asymptotic Hecke alg (modify struc consts for \mathcal{H}_{ext} in KL-basis).

Thm (Bezrukavnikov, Finkelberg, Ostrik)

Suppose **c** corresp to $\mathscr{O} \ni x$.

$$(\mathscr{A}_{\mathbf{c}}, \odot) \cong (\operatorname{Rep}(\mathbf{G}_{\mathrm{red}}^{\times}), \otimes).$$

Reductive group case

 $\mathbf{c} =$ an antispherical KL-cell (**not** a p-cell)

Hope: still possible to define

 $^p\mathscr{A}_{\mathbf{C}}$

as a subquotient of parity sheaves on Fl, such that:

- "truncated convolution" ⊙ still makes sense
- still categorifies the same part of the asymptotic Hecke algebra

Hope

Suppose **c** corresp to $\mathscr{O} \ni x$.

$$({}^{p}\mathscr{A}_{\mathbf{c}},\odot)\cong(\mathrm{Tilt}(\mathbf{G}_{\mathrm{red}}^{\times}),\otimes).$$

Combinatorics for GL_n

Quantum case

Lusztig, Ostrik, Bezrukavnikov ⇒

$$\left\{ egin{array}{l} \otimes ext{-ideals} \ ext{in } \operatorname{Tilt}(\operatorname{\mathsf{GL}}_n)
ight\} & \stackrel{\sim}{\longleftrightarrow} \left\{ egin{array}{l} \operatorname{nilpotent} \ ext{orbits} \end{array}
ight\} \ & \stackrel{\sim}{\longleftrightarrow} \left\{ \operatorname{partitions} \ \pi dash n
ight\} \end{array}$$

For $\pi \vdash n$, let $\mathscr{O}_{\pi} = \text{corresp orbit}$

If
$$\pi = [p_1^{a_1}, \dots, p_k^{a_k}]$$
, let $\operatorname{mult}(\pi) = (a_1, \dots, a_k)$. $x \in \mathscr{O}_{\pi} \implies (\mathsf{GL}_n)_{\mathrm{red}}^{x} \cong \mathsf{GL}_{\mathrm{mult}(\pi)}$.

Reductive group case

Conjecture \Longrightarrow

$$\begin{cases} \otimes \text{-ideals} \\ \text{in } \operatorname{Tilt}(\mathsf{GL}_n) \end{cases} \overset{\sim}{\longleftrightarrow} \begin{cases} \mathsf{nilpotent} \\ \mathsf{orbit} \end{cases} \qquad \begin{cases} \otimes \text{-ideals} \\ \text{in } \operatorname{Tilt}(\mathsf{GL}_n) \end{cases} \overset{\sim}{\longleftrightarrow} \begin{cases} \left(\mathsf{nilpotent} \\ \mathsf{orbit} \end{cases} & \otimes \text{-ideal in} \\ & \operatorname{Tilt}(\operatorname{Coh}^{\boldsymbol{G}}(\mathscr{O}) \right) \end{cases}$$

$$\overset{\sim}{\longleftrightarrow} \{ (\boldsymbol{\pi}, \otimes \text{-ideal in } \operatorname{Tilt}(\mathsf{GL}_{\operatorname{mult}(\boldsymbol{\pi})})) \}$$

Iterate:

$$\left\{egin{array}{l} \otimes ext{-ideals} \ \operatorname{in}\ \operatorname{Tilt}(\mathsf{GL}_n)
ight\} &\stackrel{\sim}{\longleftrightarrow} \left\{egin{array}{l} \mathsf{sequences}\ \mathsf{of}\ \mathsf{multipartitons} \ (\pi_1,\pi_2,\dots,) \end{array}
ight\}$$

where:

- $\triangleright \pi_1 \vdash n$
- ▶ For k > 1, $\pi_k \vdash \text{mult}(\pi_{k-1})$
- ▶ For $k \gg 1$, π_k is trivial (all 1's)