Title: Type D quiver representation varieties, double Grassmannians, and symmetric varieties

Speakers: Jenna Rajchgot

Collection: Geometric Representation Theory

Date: June 23, 2020 - 2:00 PM

URL: http://pirsa.org/20060030

Abstract: Since the 1980s, mathematicians have found connections between orbit closures in type A quiver representation varieties and Schubert varieties in type A flag varieties. For example, singularity types appearing in type A quiver orbit closures coincide with those appearing in Schubert varieties in type A flag varieties (Bobinski-Zwara); combinatorics of type A quiver orbit closure containment is governed by Bruhat order on the symmetric group (follows from work of Zelevinsky, Kinser-R); and multiple researchers have produced formulas for classes of type A quiver orbit closures in equivariant cohomology and K-theory in terms of Schubert polynomials, Grothendieck polynomials, and related objects.

After recalling some of this type A story, I will discuss joint work with Ryan Kinser on type D quiver representation varieties. I will describe explicit embeddings which completes a circle of links between orbit closures in type D quiver representation varieties, B-orbit closures (for a Borel subgroup B of GL_n) in certain symmetric varieties GL_n/K , and B-orbit closures in double Grassmannians $Gr(a, n) \times Gr(b, n)$. I will end with some geometric and combinatorial consequences, as well as a brief discussion of joint work in progress with Zachary Hamaker and Ryan Kinser on formulas for classes of type D quiver orbit closures in equivariant cohomology.

Jenna Rajchgot

University of Saskatchewan Saskatoon, SK, Canada

Geometric Representation Theory Conference Perimeter Institute & Max Planck Institute June 22-26, 2020

 \mathbf{b}

Catharina Str

Determinantal varieties

Consider the affine space of matrices

$$\mathsf{Mat}(d_0, d_1) = \{ V \mid \mathbb{C}^{d_0} \xrightarrow{V} \mathbb{C}^{d_1} \}.$$

Let $X = (x_{ij})$ be a $d_0 \times d_1$ matrix of variables.

- There is a natural (right) action of $GL(d_0) \times GL(d_1)$ on $Mat(d_0, d_1)$ by $V \cdot (g_0, g_1) = g_0^{-1} V g_1$.
- Orbits are determined by matrix rank r.
- Orbit closures are determinantal varieties, defined by the prime ideals

 $I_r = \langle (r+1 \times r+1) \text{ minors of } X \rangle \subseteq \mathbb{C}[x_{ij}]$

(日)(1日)(三)(日)(日)(日)

DQC

 Orbit closures normal and Cohen-Macaulay, have nice Gröbner bases, orbit closure containment understood, multigraded Hilbert series understood...

Quiver representations

• A quiver Q is a finite directed graph.

 A representation of Q is an assignment of vector space to each vertex and linear map to each arrow.

A dimension vector d = (d₀, d₁, ..., d_n) for Q assigns vector space C^{d_i} to vertex of Q with label i.

- A representation space rep_Q(d) is the space of all representations for Q with fixed dimension vector.
- $GL(d) := GL(d_0) \times GL(d_1) \times \cdots \times GL(d_n)$ acts on $rep_Q(d)$ by conjugation.

2

► A quiver locus is a **GL**(**d**) orbit closure.

Example

Let $Q = \bullet \rightarrow \bullet$, and let $\mathbf{d} = (2,3)$.

- $\operatorname{rep}_Q(\mathbf{d}) = 2 \times 3$ matrices.
- There are three GL(d) = GL(2) × GL(3) orbits (determined by matrix rank):

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \mathbf{GL}(\mathbf{d}), \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \mathbf{GL}(\mathbf{d}), \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \mathbf{GL}(\mathbf{d}),$$

• Quiver loci are determinantal varieties.

Dynkin quiver loci

- For Q connected, rep_Q(d) has finitely many orbits for all d if and only if Q has Dynkin type A, D, or E. (Gabriel's Theorem)
- Orbit closures for Dynkin quivers Q are determined set-theoretically by minors of certain somewhat complicated matrices. (Bongartz)

Example (Equioriented A_4)

 $\mathbb{C}^{d_0} \xrightarrow{V_1} \mathbb{C}^{d_1} \xrightarrow{V_2} \mathbb{C}^{d_2} \xrightarrow{V_3} \mathbb{C}^{d_3}$

Orbits determined by ranks of: V_1 , V_2 , V_3 , V_1V_2 , V_2V_3 , $V_1V_2V_3$

Example (Not Dynkin)

GL(d) orbits characterized by Jordan canonical forms of $d \times d$ matrices (thus, infinitely many orbits).

A few motivations and connections

Motivations from commutative algebra and algebraic geometry

- up to radical, Dynkin quiver loci are generalized determinantal varieties, and include some classically studied varieties
- naturally arise in study of degeneracy loci of vector bundles

Another connection: representation theory of algebras

- The category rep(Q) of reps. of Q is equivalent to category of right modules over the path algebra kQ.
- \blacktriangleright connections between geometry of quiver loci to rep. theory of Q
 - Eg. Degeneration order
 - For V, W ∈ rep_Q(d), define V ≤_{deg} W iff GL(d) · V ⊇ GL(d) · W.
 V ≤_{deg} W iff dim Hom_Q(V, X) ≤ dim Hom_Q(W, X) for all
 - indecomposable reps. X. (Bongartz)

DQC

Degeneracy loci and quiver polynomials

Degeneracy loci:

Let Y be a non-singular algebraic variety. Let V, W be vector bundles over Y of ranks m, n and consider $\varphi: V \to W$. Let $r \leq \min(m, n)$.

- degeneracy locus: $Y_r = \{y \in Y \mid \text{rank } \varphi_y \leq r\}$
- defined locally by vanishing of $(r + 1) \times (r + 1)$ minors of a matrix

To quiver loci:

- For general φ, the cohomology class [Y_r] is expressible in terms of a Schur function. (Giambelli-Thom-Porteous formula)
- Buch-Fulton: Found an analogous formula for sequences of bundle maps V₁ → V₂ → · · · → V_n.
- Knutson-Miller-Shimozono: more formulas in the Buch-Fulton setting by computing *multidegrees* of equioriented type A quiver loci (quiver polynomials)
- more formulas were subsequently found (in both cohomology and K-theory) in this and related settings (Buch, Fehér, Kinser, Knutson, Kresch, Miller, R, Rimányi, Shimozono, Tamvakis, Yong)

Part II: Type A quiver loci and Schubert varieties

シック・ヨー イヨト イヨト トロト

Schubert varieties

Let G = GL(n) and let $B_+ \leq G$ (resp. $B_- \leq G$) be subgroups of upper triangular (resp. lower triangular) matrices.

• Flag variety: $B_{-} \setminus G$

This space is naturally identified with the space of complete flags: $0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \subseteq \mathbb{C}^n$, dim $V_i = i$.

- Schubert cell: B_+ -orbit in $B_- \setminus G$.
- Schubert variety: closure of a Schubert cell.
- Schubert cells and varieties are indexed by permutations in S_n .

Woo-Yong, building on Kazhdan-Lusztig: can study local properties (eg. singularities) via generalized determinantal varieties

Kazhdan-Lusztig varieties

The Kazhdan-Lusztig variety $X_{v,w}$ is a generalized determinantal variety associated to two permutations $v, w \in S_n$.

- v determines a matrix of 0s, 1s, and variables.
- w determines a collection of minors of the matrix assoc. to v.

Each Kazhdan-Lusztig variety is isomorphic, up to an affine space factor, to an open patch of the Schubert variety X_w .

Example

$$\begin{pmatrix} a & b & c & 1 \\ d & e & 1 & 0 \\ f & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

matrix from $v = 4321$ $w = 1423$ NW ranks of w
 $X_{v,w} = \mathbb{V}\left(\det \begin{bmatrix} a & b & c \\ d & e & 1 \\ f & 1 & 0 \end{bmatrix}, (2 \times 2) - \text{minors of } \begin{bmatrix} a & b & c \\ d & e & 1 \end{bmatrix}\right)$

Type A quiver loci and Schubert varieties

$$\operatorname{rep}_{O}(\mathbf{d}) = \{ (V_1, V_2, V_3) \mid \mathbb{C}^{d_0} \xrightarrow{V_1} \mathbb{C}^{d_1} \xrightarrow{V_2} \mathbb{C}^{d_2} \xrightarrow{V_3} \mathbb{C}^{d_3} \}$$

Orbits determined by ranks of: V_1 , V_2 , V_3 , V_1V_2 , V_2V_3 , $V_1V_2V_3$. The equioriented Zelevinsky map is defined to be:

$$\operatorname{rep}_Q(\mathbf{d}) \to \begin{bmatrix} * & * & * & I_{d_0} \\ * & * & I_{d_1} & 0 \\ * & I_{d_2} & 0 & \textcircled{o} \\ I_{d_3} & 0 & 0 & 0 \end{bmatrix}, \quad (V_1, V_2, V_3) \to \begin{bmatrix} 0 & 0 & V_1 & I_{d_0} \\ 0 & V_2 & I_{d_1} & 0 \\ V_3 & I_{d_2} & 0 & 0 \\ I_{d_3} & 0 & 0 & 0 \end{bmatrix}$$

- Equioriented type A quiver loci are isom. to open subvarieties of Schubert varieties (Musili-Seshadri, Zelevinsky, Lakshmibai-Magyar)
- Consequences for these quiver loci: prime defining ideals, singularity results, F-splitting, orbit closure containment via Bruhat order
- In general: combinatorial and algebro-geometric aspects of arbitrary type A quiver loci are governed by corresponding aspects of Schubert varieties (Bobiński-Zwara, Kinser-R)

Multigraded Hilbert series

Set-up:

- Let $S = \mathbb{C}[x_1, \ldots, x_n]$ be positively \mathbb{Z}^d -graded.
- Let *M* be a finitely generated \mathbb{Z}^d -graded module over *S*.

Definition

The multigraded Hilbert series of M is

$$H(M;\mathbf{t}) = \sum_{\mathbf{a} \in \mathbb{Z}^d} \dim_{\mathbb{C}}(M_{\mathbf{a}})\mathbf{t}^{\mathbf{a}} = \frac{\mathcal{K}(M;\mathbf{t})}{\prod_{i=1}^n (1-\mathbf{t}^{\mathbf{a}_i})}, \quad \deg(x_i) = \mathbf{a}_i$$

- K-polynomial of *M*: the numerator $\mathcal{K}(M; \mathbf{t})$
- multidegree of *M*: sum of lowest deg. terms of $\mathcal{K}(M; \mathbf{1} \mathbf{t})$.

・ロト・日本・モート・モークタイン

$$\operatorname{Mat}_{m \times n}(\mathbb{C}) = \{ M \mid \mathbb{C}^m \xrightarrow{M} \mathbb{C}^n \}.$$

• Have a (right) action of $(\mathbb{C}^{\times})^m \times (\mathbb{C}^{\times})^n$ on $Mat_{m \times n}(\mathbb{C})$:

 $M \cdot (g_0, g_1) = g_0^{-1} M g_1.$

- It induces a \mathbb{Z}^{m+n} -grading on coord \mathfrak{g} ring $\mathbb{C}[Mat_{m \times n}(\mathbb{C})]$.
- The K-polynomial of the determinantal variety X_r ⊆ Mat_{m×n}(C) is a double Grothendieck polynomial.
- The multidegree is a double Schubert polynomial.

This has been generalized, in multiple ways, to general type A quiver loci.

Eg: the K-poly. of a type A quiver locus is a ratio of specialized double Grothedieck polynomials (Knutson-Miller-Shimozono, Kinser-Knutson-R)

Another generalization: type A quiver component formulas

In 2005, Buch and Rimányi proved a positive multidegree formula for type A quiver loci and conjectured an alternating K-polynomial formula.

Theorem (Kinser-Knutson-R)

The Buch-Rimányi conjecture is true.

Proof sketch: We reduce to the bipartite case where the goal is to show:

$$\mathcal{K}(\Omega;\mathbf{t},\mathbf{s}) = \sum_{\mathbf{w} \in \mathcal{KW}(\Omega)} (-1)^{|\mathbf{w}| - \operatorname{codim}(\Omega)} \mathfrak{G}_{\mathbf{w}}(\mathbf{t};\mathbf{s}).$$

We give a geometric proof of this combining:

- degenerations of bipartite quiver loci;
- a bipartite version of the Zelevinsky map (Kinser-R);
- properties of Kazhdan-Lusztig ideals;
- combinatorial arguments.

Remark: proofs in *equioriented* type A came earlier (Knutson-Miller-Shimozono, Buch, Miller, Yong)

5 minute break: summary slide

General:

- We are interested in quiver loci of Dynkin quivers a.k.a.
 closures of GL(d)-orbits of representations of Dynkin quivers.
- Our main motivation is to find explicit formulas for *quiver* polynomials.

Type A:

ß

- Geometry and combinatorics of type A quiver loci is closely tied to that of Schubert varieties in type A flag varieties.
- Formulas for quiver polynomials are expressible in terms of well-known polynomials from Schubert calculus.
- Helpful idea: reduce all orientations of type A quivers to the bipartite (source-sink) orientation.

After the break: type D

・ロト・日本・山下・山下・山下・山下・

Part III: Type D quiver representation varieties, double Grassmannians, and symmetric varieties

23

Type D quiver loci

Let G = GL(a + b) and $K = GL(a) \times GL(b)$ embedded as two blocks along the diagonal. Then $K \setminus G$ is a variety. It can be embedded in the double Grassmannian $Gr(a, n) \times Gr(b, n)$ as an open subvariety.

Theorem (Kinser-R)

There is a series of links

each of which allows for transfer of various algebro-geometric and combinatorial properties from target to source.

 \implies results on sings. (recovering work of Bobiński-Zwara), type D poset as a subposet of clans poset (latter poset structure described by Wyser)

Remark: unlike in type A, don't get prime defining ideals

Main idea

To a type D quiver

with fixed dimension vector \mathbf{d} , associate a (non-type D) bipartite quiver of the form

$$Q^{*} = x_{0}^{1} \xrightarrow{\beta_{0}} y_{0}^{3} \xrightarrow{\alpha_{1}} x_{1}^{3} \xrightarrow{\beta_{1}} y_{1}^{3} \xrightarrow{\alpha_{2}} x_{2}^{4} \xrightarrow{\beta_{2}} y_{2}^{4} \xrightarrow{\alpha_{3}} x_{3}^{5} \xrightarrow{\beta_{3}} y_{3}^{6}$$

and an associated dimension vector \mathbf{d}^* where $\mathbf{d}^*(\mathbf{v}^m) = \mathbf{d}(m)$.

- ▶ Define the open subvariety X_Q ⊆ rep_{Q*}(d*) where red arrows are invertible.
- Realize each quiver locus in rep_Q(d), up to smooth factor, as an orbit closure in X_Q.

ション (日本) (日本) (日本) (日本) (日本)

Embed X_Q into a slice $S(\mathbf{d}^*)$ of $K \setminus G$:

<i>S</i> (d [★]) : −	y0 y1 y2 x0 x1 x2 y0 y1 y2 x0 x1 x2 x0	$\begin{array}{c} x_2 \\ \vdots \\ \vdots \\ \vdots \\ J \\ \vdots \\ \vdots \\ \vdots \\ j \end{array}$	×1 · · J · · · · · · · · · · · · · · · ·	×0 · · J · · · · · · · · · · · · ·	×0 * * * * · · · · * * 1 · · ·	×1 ×1 * * * * · · · · · · · · · · · · · · · ·	×2 ** * * * * · · · 1	V2 J J	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y ₀ ' ·]	$\begin{array}{c} y_1^s \\ \cdot \\ $	y ₂ ^s
V ↦		· · J · · · · · · · · · ·	· · · · · · · ·	$V_{\beta_0} \\ 0 \\ 0 \\ . \\ . \\ 0 \\ 0 \\ 0 \\ 1 \\ . \\ .$	$\begin{matrix} v_{\alpha_1} \\ v_{\beta_1} \\ 0 \\ \cdot \\ \cdot \\ \cdot \\ v_{\alpha'_1} \\ v_{\beta_1} \\ 0 \\ \cdot \\ 1 \\ \cdot \\ \cdot \end{matrix}$	$\begin{array}{c} 0 \\ V_{\alpha_{2}} \\ V_{\beta_{2}} \\ \vdots \\ \vdots \\ 0 \\ V_{\alpha_{2}} \\ V_{\beta_{2}} \\ \vdots \\ 1 \end{array}$			$\begin{bmatrix} J & \cdot \end{bmatrix}$		· · · · ·	-

Jenna Rajchgot

Identify each orbit closure in X_Q with an open subvariety of $\overline{\mathcal{O}} \cap S(\mathbf{d}^*)$, for some *P*-orbit closure $\overline{\mathcal{O}}$ in $K \setminus G$. Then show that the latter is isomorphic, up to smooth factor, to an open subvariety of $\overline{\mathcal{O}}$.

うして 川 ふかく 山 うんしゃ

A very small example

$$Q = \bigvee_{y_0'}^{y_0} x_1 - y_1, \ \mathbf{d}(y_0) = \mathbf{d}(y_0') = 0, \mathbf{d}(x_1) = \mathbf{d}(y_1) = 1$$

Then $Q^* = Q$, $\mathbf{d}^* = \mathbf{d}$, and

.

• $\operatorname{rep}_Q(\mathbf{d})$ and the closed orbit $\{0\} \subseteq \operatorname{rep}_Q(\mathbf{d})$ embed in $S(\mathbf{d}^*)$ as the vanishing sets of $\langle a - b \rangle$ and $\langle a, b \rangle$ respectively.

·ロト · (日) · (1)

- corresponding clans: 1 - +1 and 1122 respectively.

Example continued

$$Q = \bigvee_{y'_0}^{y_0} x_1 - y_1, \ \mathbf{d}(y_0) = \mathbf{d}(y'_0) = 0, \mathbf{d}(x_1) = \mathbf{d}(y_1) = 1$$

 $T = \mathbb{C}^{\times} \times \mathbb{C}^{\times}$ acts on $\operatorname{rep}_Q(\mathbf{d})$ by conjugation, which induces a grading on $\mathbb{C}[a] := \mathbb{C}[\operatorname{rep}_Q(\mathbf{d})]$, with $\operatorname{deg}(a) = t - s$.

We can compute this as a ratio of specialized Wyser-Yong polynomials, $\Upsilon_{\gamma}(C; D)$:

$$\Upsilon_{1-+1}(c_1, c_2, c_3, c_4; d_1, d_2, d_3, d_4) = c_1 - d_1 + c_2 - d_2,$$

 $\Upsilon_{1122}(c_1, c_2, c_3, c_4; d_1, d_2, d_3, d_4) = (c_1 + c_2 - d_3 - d_4)(c_1 - d_1 + c_2 - d_2)$

The quiver polynomial of the closed orbit is:

$$\frac{\Upsilon_{1122}(-s,-s,-t,-t;-t,-s,-t,-s)}{\Upsilon_{1-+1}(-s,-s,-t,-t;-t,-s,-t,-s)}$$

Generalizing this is work in progress with Z. Hamaker and R. Kinser.

