Title: The de Rham model for elliptic cohomology from physics

Speakers: Arnav Tripathy

Collection: Elliptic Cohomology and Physics

Date: May 26, 2020 - 11:00 AM

URL: http://pirsa.org/20050053

Abstract: I'll discuss elliptic cohomology from a physical perspective, indicating the importance of the Segal-Stolz-Teichner conjecture and joint work with D. Berwick-Evans on rigorously proving some of these physical predictions.

Pirsa: 20050053 Page 1/18

The de Rham model for elliptic cohomology

Arnav Tripathy based on joint work with Dan Berwick-Evans

Harvard University

Elliptic Cohomology and Physics Perimeter, May 2020

Pirsa: 20050053

Table of Contents

What is elliptic cohomology?

2 The Segal-Stolz-Teichner conjecture

Life goes on

Pirsa: 20050053 Page 3/18

What **is** elliptic cohomology?

Following Grojnowski, Hopkins, Segal, Stolz-Teichner, Witten

- First, the elliptic genus.
- Given a 2d QFT, we have the partition function

$${
m Tr}_{\mathcal H} e^{eta H} = \int e^{i S} d({
m fields} \ {
m on} \ {
m a \ torus}) = Z(au, \overline{ au})$$

satisfying the crucial property¹

$$Z(au, \overline{ au}) = Z(-1/ au, -1/\overline{ au}).$$

ullet Simplify: suppose at least $\mathcal{N}=(0,1)$ supersymmetry and insert $(-1)^F$ to obtain

$$\operatorname{Tr}_{\mathcal{H}}(-1)^F e^{\beta H} = Z_{EG}(\tau).$$

• Witten index argument: $Z_{EG}(\tau)$ holomorphic, deformation invariant, i.e. a deformation-invariant modular form on $\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H}$.

¹Assume all anomalies vanish at present.

What **is** elliptic cohomology?

- So, $Z_{EG}(\tau)$ a genus (à la Hirzebruch for σ -models + more) valued in modular forms.
- Behavior in families? What is a "family of modular forms" over some base space B? Supersymmetric QM: $H^*(B; MF_{\mathbb{C}}) =: Ell(B)_{\mathbb{C}}$.
- Ok, suppose we want a refinement. Natural idea: simply use deformation classes of families of the 2d $\mathcal{N}=(0,1)$ theories themselves. [Segal, Stolz-Teichner]
- Other obvious idea: quotient the complex cobordism spectrum MU by the formal group law induced from (families of) elliptic curves. [Landweber-Ravenel-Stong, Hopkins-Mahowald-Miller]
- Conjecture: These constructions agree. Applications: Manifold.

Pirsa: 20050053 Page 5/18

What **is** elliptic cohomology?

• Conjecture: These constructions agree. Applications: Manifold.

Topological Vafa-Witten [Gukov-Pei-Putrov-Vafa]

Consider the 6d $\mathcal{N}=(0,2)$ theory. Compactifying on an elliptic curve yields 4d $\mathcal{N}=4$, and a further twisted compactification on a four-manifold M yields the modular form $VW_M(\tau)$. Reversing the order of compactification, the twisted compactification of the 6d theory on M yields a 2d theory whose elliptic genus would return $VW_M(\tau)$. Segal-Stolz-Teichner predicts a canonical lift of said modular form to a **topological** modular form. If one instead has a family of such manifolds parametrized by some base-space B (for example, G-symmetry), one obtains a class in $\mathrm{Ell}_G(B)$.

Pirsa: 20050053 Page 6/18

What is equivariant elliptic cohomology?

- First, the equivariant elliptic genus.
- Given a 2d QFT with G flavor symmetry, we have the partition function with background gauge fields

$$\operatorname{Tr}_{\mathcal{H}_{\boldsymbol{g}}} \boldsymbol{h} e^{\beta H} = \int_{\mathsf{twisted b.c.s}} e^{iS} d(\mathsf{fields on a torus}) = Z(\tau, \overline{\tau}, \boldsymbol{g}, \boldsymbol{h})$$

satisfying the crucial property

$$Z(\tau, \overline{\tau}, \mathbf{g}, \mathbf{h}) = Z(-1/\tau, -1/\overline{\tau}, \mathbf{h}^{-1}, \mathbf{g}).$$

ullet Simplify: suppose at least $\mathcal{N}=(0,1)$ supersymmetry and insert $(-1)^F$ to obtain

$$\operatorname{Tr}_{\mathcal{H}_{\mathbf{g}}}(-1)^F h e^{\beta H} = Z_{EG}(\tau, \mathbf{g}, \mathbf{h}).$$

• Witten index argument: $Z_{EG}(\tau, g, h)$ holomorphic, deformation invariant, i.e. a deformation-invariant equivariant modular form on $\mathrm{SL}_2(\mathbb{Z}) \times G \backslash \mathbb{H} \times C^2(G) =: \mathrm{Bun}_G(\mathcal{E})$.

Arnav Tripathy (Harvard University)

The de Rham model for elliptic cohomology

Perimeter, May 2020

7 / 17

What **is** equivariant elliptic cohomology?

- So, $Z_{EG}(\tau, \mathbf{g}, \mathbf{h})$ a twisted, twined genus (à la Hirzebruch for σ -models + more) valued in equivariant modular forms.
- Behavior in families? What is a "family of modular forms" over some base space B? Supersymmetric QM: $H^*(B; MF_{G,\mathbb{C}}) =: \mathrm{Ell}(B)_{G,\mathbb{C}}$.
- Ok, suppose we want a refinement. Natural idea: simply use deformation classes of families of the 2d $\mathcal{N}=(0,1)$ theories with G flavor symmetry. [Segal, Stolz-Teichner]
- Other obvious idea: build a moduli space of derived algebro-geometric objects, oriented elliptic curves with equivariant structure. [Lurie, Gepner-Meier]
- Even more directly: build a family of algebras directly over $Bun_G(\mathcal{E})$, at least over \mathbb{C} . [Grojnowski]
- Conjecture: These constructions all agree.

Pirsa: 20050053 Page 8/18

Table of Contents

What is elliptic cohomology?

2 The Segal-Stolz-Teichner conjecture

3 Life goes on

The equivariant Segal-Stolz-Teichner conjecture

- Conjecture: Phases of 2d $\mathcal{N} = (0,1)$ theories with G flavor symmetry with some worldsheet torus E and parametrized by a base-space M yield a model for equivariant elliptic cohomology $\mathrm{Ell}_G(M)$ (as defined in topology).
- Too hard to start with. Let's try a 0-categorical, 0-chromatic height version first.
- Conjecture: The algebra of supersymmetric observables of the 2d $\mathcal{N}=(0,1)$ σ -model to a G-manifold M, with background gauge fields turned on, yields $\widehat{\mathrm{Ell}}_G(M)_{\mathbb{C}}$ (as defined in Grojnowski, BE-T).
- Additional structure one could ask for:
 - ▶ Universal Euler classes in $\mathrm{Ell}_{U(n)}(\mathrm{pt}), \mathrm{Ell}_{\mathrm{Spin}(2\mathrm{n})}(\mathrm{pt})$ arising from $\mathcal{N}=(0,1)$ free fermions in a (complex or real) representation. (Similar statement for Thom classes.) [Ando-Hopkins-Rezk]
 - Specializing the above to U(1) intertwines the natural monoidal structures on both sides. [Ando-Hopkins-Strickland]

Pirsa: 20050053 Page 10/18

A theorem!

Theorem [Berwick-Evans-T]

For G any compact Lie group and M any compact G-manifold,

Theorem [Berwick-Evans-T]

The function in the above model induced by n gauged free fermions agrees with the universal elliptic Euler class of $\mathrm{Ell}_{U(n)}(\mathrm{pt})$.

Theorem [Berwick-Evans-T]

The multiplicative structure on the universal elliptic Euler class $\sigma(\tau,z) \in \mathrm{Ell}_{U(1)}(\mathrm{pt})$ induced from multiplying U(1) gauge fields agrees with the (formal) elliptic group law defining elliptic cohomology.

Pirsa: 20050053 Page 11/18

Idea of proof

Definition [Grojnowski]

For G a compact Lie group and M a G-manifold, the fiber of $\mathrm{Ell}_G(M)_\mathbb{C}$ at $(g_1,g_2)\in C^2(G)$ is

$$\left(\mathrm{Ell}_G(M)_{\mathbb{C}}\right)_{(g_1,g_2)}:=H^*(M^{(g_1,g_2)};\mathbb{C})[\beta,\beta^{-1}].$$

Example

Consider U(1) acting on S^2 by rotation, with fixed points the north and south poles. Then $\mathrm{Ell}_{U(1)}(S^2)$ is a rank-two vector bundle over $\mathrm{Bun}_{U(1)}(\mathcal{E})$.

• So, proof strategy: (i) understand local (super)geometry of $Bun_G(\mathcal{E})$, (ii) perform local calculation of the supersymmetric observables as de Rham cohomology, (iii) successfully glue together.

Pirsa: 20050053 Page 12/18

Table of Contents

What is elliptic cohomology?

2 The Segal-Stolz-Teichner conjecture

3 Life goes on

Ι

Pirsa: 20050053 Page 13/18

What **is** elliptic cohomology, physically?

- **EII**(M), a 2-category of boundary conditions of some 3d σ -model with target M. (A priori, needs 3d $\mathcal{N}=4$ supersymmetry.)
- Ell(M), phases of 2d $\mathcal{N}=(0,1)$ theories parametrized by M.
- $\mathrm{Ell}(M)_{\mathbb{C}}$, the BPS Hilbert space of a 3d $\mathcal{N}=1$ σ -model to M on a torus.
- $\mathrm{Ell}(M)_{\mathbb{C}}$, the algebra of BPS observables for the 2d $\mathcal{N}=(0,1)$ σ -model with torus worldsheet and target M. (And behavior of extended observables?)
- Compare to K-theory: boundary conditions for the B-model, phases of SQMs, BPS Hilbert space of 2d σ -model, algebra of BPS observables for SQMs. ($K_{\rm top}$ from a category?)
- Why $K(M)_{\mathbb{C}}$ rather than $H^*(M;\mathbb{C})$ as the Hilbert space above? Discrete torsion. Functoriality?

Pirsa: 20050053 Page 14/18

So, what to attack next?

• Most obviously, return to the Segal-Stolz-Teichner conjecture but with increased chromatic height. We believe we have a model (cf. [Luecke]) for KMF_G (cf. [Bunke-Naumann]), which fits in the square

- What about the σ -models above where the torus is replaced by a higher-genus surface? Enter $gll_G(M)$, which exists over $\mathbb C$ with necessarily poor integral properties but, for example, should contain the information of $Z_g(M)$ [Alvarez-Singer].
- M2-branes can end on M5-branes.

Pirsa: 20050053 Page 15/18

M-theory and TMF

- The D-brane charge lattice in type II string theories is most naturally K-theory (and type I, KO) as they represent boundary conditions for the fundamental string.
- Consider an F1-ending-on-D4 configuration in IIA and lift to M-theory to obtain an M2-ending-on-M5 configuration.
- Should the charge lattice of M5 branes most naturally be topological modular forms?
- Freed-Moore-Segal suggests TMF should then have some self-Pontryagin duality.
- Indeed, $Tmf_{\mathbb{C}}$ is self-dual with shift 21 by Serre duality and $\Delta(\tau)d\tau$ exhibiting $K_{\overline{\mathcal{M}_1}} \simeq \omega^{-10}$. [Stojanoska]

Pirsa: 20050053 Page 16/18

So, what to attack next?

• Most obviously, return to the Segal-Stolz-Teichner conjecture but with increased chromatic height. We believe we have a model (cf. [Luecke]) for KMF_G (cf. [Bunke-Naumann]), which fits in the square

- What about the σ -models above where the torus is replaced by a higher-genus surface? Enter $gll_G(M)$, which exists over $\mathbb C$ with necessarily poor integral properties but, for example, should contain the information of $Z_g(M)$ [Alvarez-Singer].
- M2-branes can end on M5-branes.

Pirsa: 20050053 Page 17/18

Pirsa: 20050053 Page 18/18