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Abstract: Projective vector bundles (or gerbe modules) are generalizations of vector bundles in the presence of a gerbe on manifolds. Given a
projective vector bundle, we will first show how to use it to twist the Witten genus to get modular invariants, which we call projective eliptic
genera. Then we will give two applications: (1) given any pseudodifferential operator, we will construct modular invariants generalizing the Witten
genus, which corresponds to the Dirac operator; (2) we will enhance the Hori map in T-duality to the graded Hori map and show that it sends Jacobi
formsto Jacobi forms. This represents our joint works with Mathai.
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Based on the following papers :

1. Fei Han and Varghese Mathai, Projective Elliptic Genera and

Elliptic Pseudodifferential Genera, Advances in Mathematics, 358
(2019).

2.Fei Han and Varghese Mathai, T-duality, Jacobi forms and Witten
Gerbe Modules, arXiv: 2001.00322.
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Topological Side

By Hirzebruch, a genus is a ring homomorphism
0:N500Q — R,

where R is an integral domain over Q.

1
q(z) = Z e lw(ﬁpn)zﬂ—l—l

i g ]

is called the logarithm of ¢.
Let f= g~ !. Then following Ochanine, ¢ is called an elliptic genus if f
satisfies the ODE

(f)* =1—25f+€f",

where €, 0 are two paramaters. Or in other words, (f, /) parametrize
the elliptic curve
' =1— 20+ ex®.
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Topological Side

Equivalently, fsatisfies

flu)f (v) + 1 (w)f(v)
1—eflu)’flv)2

Denotes i = flu), y2 = f(v), F(y1,y2) = f(f (1) + f ' (12)), then F
has the formal group law

Au+wv) =

P(y2) + yo/ P(y1)
1 —eyiva

(15
Flyn + y2) = =ph+typt+--,

where P(z) = 1 — 262% + ex.
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Topological Side

The Jacobi theta functions are defined as follows :

1) = 2448 sin(7v) ﬁ [(1 — ¢)(1 - 627"“/__1“(;5':)(1 — e_gﬂvq“’qj)} :
j=1
01 (v, 7) = 2¢*% cos(mv) ﬁ [(1 — @)1+ l’izﬂ\/__lvqj)(l - 5_27"“/_—1'”(;5)] :
j=1
0(0r) = (1= g)(1 = ETVTTogm12)(1 = 2V TTogim1/2)]
j=1
O3(v,7) = ﬁ [(1 — (1 + GQW",__lﬂr;j_]ﬁ)(l + {f_zw"/__l“qj_lﬁ)} .
j=1

They are all holomorphic functions for (v,7) € C x H, where C is the
wsomplex plane and H is the uppeg Eitlf plane. g = &*™*,
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Topological Side

The Jacobi theta functions are defined as follows :

(1- @)1 - Vg1 — 2V TG

="

0(v, 7) = 2¢"/® sin(nv)
1

J

::18

01(v, 7) = 2¢"8 cos(nv) [ (1-¢)1+ rz”"/_“q’)(l + (,_27'”/_”;7)] ,

=1
Oz (v, 7) = H [(1 =gl 1l— Eﬁﬁv’—_lvq:f—lﬂ)(l _ E—zw\/flqu—u:z)}
j=1
ba(v,7) = [ [(1 = (1 + 7 TTrgm1/2)(1 4 &2/ Tog-1/2)
j=1

They are all holomorphic functions for (v, 7) € C x H, where C is the
__complex plane and H is the upper M plane. g = ™',
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Topological Side

Then we have

9"(& 7) 01 (u, 7)
6’(?.5 T) 6,(0,7)°

9"(0 7) O2(u, 7)
ﬁ(u 7) 62(0,7)°

Let M be a 4i-dimensional closed smooth oriented manifold. Let
{+27m+/—1z;} be the formal Chern roots for TM @ C. Define

{I)L f'.dr <Hf1 2?"?, >

w(M, ) <Ef2 >

@ (M, 7),Pw(M, 1) are called the elliptic genera of M.
Pirsa: 20050050 Page 8/66
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Topological Side

Let

Define

U w(M, 7) is called the Witten genus of M.
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Topological Side

Proposition (Zagier)

1)®L(M,T) is a modular form of weight 2i over I'4(2) ;
Oy (M, 1) is a modular form of weight 2i over T'°(2) ;
if the first rational Pontrjagin class p1(M) = 0, then

U w(M, 1) is a modular form of weight 2i over SLo(Z).
2) the following equality hold,

®r(M,—1/7) = (21)*®w(M,T).
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Topological Side

A spin manifold M is called string if % p1(M) = 0. This means the free
loop space LM is spin. To make sense out of this, important works by
Killingback, McLaughlin, Stolz-Teichner, Waldorf, Kottke-Melrose.

The homotopy lifting of Witten genus lifts leads to the theory
tmf(topological modular forms) developed by Hopkins-Miller and the
g-orientation :

o : MString — tmf.
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(Geometric Side

Let M be a 4k-dimensional oriented Riemannian manifold. Let VM
be the associated Levi-Civita connection on TM and R = (VTM)?2
be the curvature of VI, Define

R™ @'(0,7) 61(E
¢, (M T1)= det? ,_
L(M,7) /M ¢ (Qﬂ"‘z o0&, 1) 91({],?

RT™ ¢/(0,7) 02(Z4,7) 1
— : =2 {2
bw(M,) = [ deott ( i ) € Qllg ),

) }) e Q[l¢"])

an? §(EZL 7)
i ™ p! -
V(7 = [ deth (f;g B )) € Qlld)]

S (M, 1), ®w(M, 1) are called the elliptic genera of M, and ¥y (M, 7)

is called the Witten genus of M.
Pirsa: 20050050 Page 12/66
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(Geometric Side

By the Chern-Weil theory of realizing characteristic classes via
curvatures, we see that this topological definition coincide with the
geometric definition.

The advantage of the geometric definition is that the definition is
local, namely we get the elliptic density and Witten density, and
therefore more flexible. For example, we can perform Chern-Simons
transgression on them.
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(Geometric Side

Twisted by a vector bundle

Let (V, ¢¥) be a Euclidean vector bundle on M. Let VV be an

Euclideian connection on Vand RY = (V")? be the curvature of VV.
Define

272 H(RIM 'T) 91(0,?’)

472 1

[ RT™™ 9/(0,7) 62(25,7) L
O (M V.7) = let 2 - dn? > /271
A, V,7) = | o (4'”2 0B 1) Ba(0.m) ) €A

S, (M, V,7),ow(M, V,7) are called the V-twisted elliptic genera.
When V = TM, we return to the elliptic genera of M.
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Analytic Side

Let E, F be two Hermitian vector bundles over M carrying Hermitian
connections V¥, V¥ respectively. Let RE = (V)2 (resp. RF = (VF)?)
be the curvature of V¥ (resp. V¥).

Let ﬁ( TM,V ™) and E( TM,V ™) be the Hirzebruch characteristic
forms defined respectively by

\1_;_1 RTM
sinh (%RTM)
% RTM
tanh (ERTM)

A(TM, V™M) = det!/?

L(TM, V™) = det!'/?
4
If we set the formal difference G = E — F, then G carries an induced

Hermitian connection V¢ in an obvious sense. We define the
associated Chern character form

e 20050050 Ch(G, vG') — tr [e}{p (—'“_1 RE)] — tr [e}ip (—'_1 RF>] : Page 15/66
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Analytic Side

For any complex number £, let

A(E)=C|lpy+tE+ EA*(E)+--- ,S(E) =C|p+ tE+ £2S*(E) + - -

denote respectively the total exterior and symmetric powers of E,
which live in K(M)[[{]].
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Analytic Side

If Wis a real Euclidean vector bundle over M carrying a Euclidean
connection V", then its complexification We = W® C is a complex
vector bundle over M carrying a canonically induced Hermitian metric
from that of W, as well as a Hermitian connection V"¢ induced from
VW.If Eis a vector bundle (complex or real) over M, set

E = E— dimFE in K(M) or KO(M).

Set
O(TM) = Q) Sy(Tc M)
n=1
01(TM) = (R) Ag(Tch)
m=1

Tt F ?
. m=
Pirsa: 20050050 Page 17/66



F¥914 5H25HM— ER = oo

{ = M Proj ell and app @ & [

Analytic Side

Suppose M is a manitold. Denote by D the Dirac operator and by
By the signature operator. Define

Uw(M,7) = IndD®O(TM)) = [,, A(M)ch(6(TM)) € Z([q]).

O, (M, 7) =Ind(By ® O(TM) @ ©1(TM))
/ E(M)ch(6(TM) ® ©,(TM)) € Z[[¢?]).

®w(M,7) =Ind(D® O(TM) ® O5(TM))

_ fM A(M)ch(6(TM) ® 02(TM)) € Z[[¢"?]

Pirsa: 20050050 Page 18/66 i



F¥9:14 sH25HM— = RO .

{ = M Proj ell and app ® a W

Analytic Side

This analytic definition coincide with the geometric definition by the
Atiyah-Singer index theorem. Moreover, the elliptic genera and
Witten genus are refined to be modular forms with integral Fourier
development on spin manifolds.

We call the operators D ® O(TM), By ® ©1(TM), D ® ©O2( TM) the

Witten operators. They can be formally viewed as the Signature,
Dirac operaors on LM, the free loop space of M.
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Analytic Side

Let V be a spin vector bundle over M.

Define V-twisted elliptic genera

O,(M,V,7)=Ind(DQRO(TM) @ (ST(V)+ 5 (V) ® ©:(V))
= /Mﬁ(ﬂﬂch(G(TM))ch((W( V) + S (V)) @ ©1(V)) € Z[[¢"/?]),

O w(M, V,7) = Ind(D @ O(TM) @ O5(V))

:f A(M)ch(6(TM))ch(O(V)) € Z[[¢"/)).

M

irsa: 20050050 Page 20/66 “
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Analytic Side

formally are vector bundles over loop space LM by Witten.
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The Mathai-Melrose-Singer index theory in the nonspin or nonspin®
settings leads us to construct projective elliptic genera.
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The Mathai-Melrose-Singer Projective Index Theory : Projective
Dirac operators fractional analytic index theorem

V. Mathai, R.B. Melrose and [.M. Singer,
Fractional Analytic Index,

J. Differential Geometry, 74, (2006), no. 2, 265-292.
math.DG /0402329

Pirsa: 20050050
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The Index Theorem for Dirac operators

Ativah and Singer defined the Dirac operator, @ on any compact
manifold Z of even dimension, and computed the analytic index,

index,(@") = dim(nullspace@™) — dim(nullspace@ ™) |

:'/Zﬁ(Z) cZ

Question Since / A(Z) ¢ Z continues to make sense for

B
manifolds Z, what corresponds to the analytic index in this situation,

since the usual Dirac operator does not exist 7

Pirsa: 20050050 23/65 Page 24/66
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MMS generalize the notion of "¢do”, to "projective 1»do”.

In particular, on an oriented even dimensional Riemannian manifold,
MMS define the notion of | . They define
its fractional analytic index, and prove an showing that
it equals the E-genus‘
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F¥9:18 sH25HM— = 58 -

{ = M Proj ell and app ® a W

Bundle gerbes

A degree 3 analogue of complex line bundles are “bundles gerbes” due
to Murray.

A special case consists of a principal PU(n)-bundle,

PU(n) — Y -2 Z J

and a central extension of the structure group

U(1) — U(n)—PU(n) |

Pirsa: 20050050 25/65 Page 26/66
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Bundle gerbes

The Dixmier-Douady invariant of Y,

DD(Y) = 8(Y) € Torsion(HB(Z} 7)) J

is the obstruction to lifting the principal PU(n)-bundle Y to a
principal U(n)-bundle.

The associated algebra bundle

A=Y X PU(n) Mﬂ(ﬁ:)

is called the associated Azumaya bundle.
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Projective vector bundles

A projective vector bundle on a manifold Z is not a global bundle on
Z, but rather it is a vector bundle £ — Y, where £ also satisfies

Lo®&Ey=Eyy, g€ PlU(n), ye Y (1) J

where £ = U(n) x y1y C — PU(n) is the primitive line bundle,

E’ﬂl ® E’yz = f’yr-gzr 9; € PU(”)- J

The identification (1) gives a projective action of PU(n) on &, i.e. an
action of U(n) on & s.t. the center U(1) acts as scalars.

For a projective vector bundle, there is a twisted Chern character
Chpg&, where B is the B-field of the bundle gerbe Y, defined by
Bouwknegt-Carey-Mathai-Murray-Stevenson.
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Projective vector bundle of spinors

Let ' — Z be a real oriented Riemannian vector bundle,

SO(n) — SO(E) - Z

the principal bundle of oriented orthonormal frames on E.

Let N denote the (co)normal bundle to the fibres. Then it is easy to
see that wo(N) = 0, so that N always has a bundle of spinors S, which
is a projective vector bundle over Z.

Also End(S) = ¢v*CI(E).
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Projective spin Dirac operator

There is always a projective bundle of spinors S = ST @ 8~ on any
even dimensional oriented manifold Z, having the property that

hom(S,S) = Cl(2).

There are natural spin connections on the Clifford algebra bundle
Cl(Z) and S* induced from the Levi-Civita connection on T*Z.

Recall also that hom(S,S) 2 Cl(Z), has an extension to CI(Z) in a
tubular neighbourhood of the diagonal A, with an induced connection
V, called the projective spin connection.
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The projective spin Dirac operator is defined as the distributional
section

d=cl-Vi(ka), Kid = 0(z— zj)fds J

Here V, is the projective spin connection V restricted to the left
variables with ¢l the contraction given by the Clifford action of 77
on the left.

As in the usual case, the projective spin Dirac operator ¢ is
and odd wrt Zo grading of S.
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Index of projective spin Dirac operators

Theorem ( Mathai-Melrose-Singer)

The projective spin Dirac operator on an even-dimensional
compact oriented manifold Z, has fractional analytic index,

Z

index,(@") = /E(Z) € Q. ‘

Recall that Z = CP?" is an oriented but manifold such that

/ E(Z) ¢ 7, justifying the title of the talk. e.g.
Z

Z = CP* — indexq(@) = —1/8. |
Z—CP — index,(@") = 3/128. J
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Index of projective spin Dirac operators

Twisted by a projective vector bundle

Let £ be a projective vector bundle over Z.

Theorem ( Mathai-Melrose-Singer)

The projective spin Dirac operator on an even-dimensional
compact oriented manifold Z, has fractional analytic indezx,

index,(Ft @ £) = /Z A(2)Chp(€) € Q.

Pirsa: 20050050 32/65 Page 33/66
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Projective Witten bundles and graded twisted Chern

character

Let £ be a projective vector bundle over Z. Construct the Witten
projective bundle

@'2(5) = ®A—q*_% (5) & ®A_q:—% (g_)
v=1 v=1

Formally the projective vector bundle over loop space LZ.

Define the projective elliptic genus in an analytic way
S w(M, E,7) = index, (" ® @ Sy (TeM) ® 04(E)),

where 97 is the projective elliptic operator.
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Projective Witten bundles and graded twisted Chern

character

To get a geometric formula for this via the Mathai-Melrose-Singer
index theorem, we need to introduce a graded twisted Chern character

GChp(02(€)),

a loop version of the twisted BCMMS Chern character, counting in
various levels in the Fourier expansion of ©5(&).
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Projective Witten bundles and graded twisted Chern

character

Then by the Mathai-Melrose-Singer projective index theorem, we have

O w(M,E,T)

=111de}{ﬂ( @-1_ X ® Sq”‘( mﬂ & 62(8))

=1

:/;E(Z)Ch (@ Sqfr(m) GChp(0:(€)) € Qll¢"]).

n=1
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Projective Witten bundles and graded twisted Chern

character

We can show that the geometric formula

1 TZ ot 0 B+I§5_
Pw(M,E,7) = /du::’t.E (R r v (UT) 2( T )T)) ;
o : 3

where the B-field is inserted.

Theorem (H.-Mathai)

If m(TZ) = p1(E), then Pw (M, E, 1) is a rational modular form.
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The first application of the projective elliptic genera is constructing
projective elliptic pseudodifferential genera for any projective elliptic
pseudodifferential operator.

Our construction of elliptic pseudodifferential genera suggests the
existence of putative S'-equivariant elliptic pseudodifferential
operators on loop space that localises to the elliptic pseudodifferential
genera, by a formal application of the Ativah-Segal-Singer localisation
theorem.

We also compute the elliptic pseudodifferential genera for some
concrete elliptic pseudodifferential operators.
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Let Z be an 4r-dimensional compact oriented smooth manifold.
Let W3(Z) € H*(M,Z) be the third integral Stiefel-Whitney class.

Fix a projective spin® structure on Z and let S*(7TZ) be the complex
projective spin® bundle of TZ with twist W3(Z2).

Denote by S.(TZ) the bundle ST (TZ2) & S, (TZ).

Let TZ* be the stable complement of the tangent bundle TZ. Let
SE(TZ*) be the projective spin® bundle of TZ+ with twist — W5(Z2).

Denote by S.(TZ1) the bundle St (TZ1) @ S, (TZ4).

Let V52 (TZ7) be projective Hermitian connections on S¥(TZ4).

Denote by V5:(TZ7) the Zo-graded projective Hermitian connection
on S.(TZ).
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Let P: C*(Fy) — C>*(F}) be a projective pseudodifferential elliptic
operator with Fj and F; being projective Hermitian vector bundles
over Z with twist H.

Let Vg and V; be projective Hermitian connections on Fy, F
respectively.

Denote by V¥ the Zo-graded projective Hermitian connection on the
bundle F' = Fy & F;.

There exists m € Z* and projective complex vector bundle F on Z
with twist H— W3(Z) such that TM & TZ+ =~ M x R™ and
FQ S.(TZ') = E®?",

Suppose the rank of E'is I. Define the first rational Pontryagin class of
P by
pl(P) = pl(E) = H4(Z,@)

It is clear that the it is well defined.
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Let Sy be the Schur functor (c.f. Fulton-Harris) They are indexed by
Young diagram A and are functors from the category of vector spaces
to itself . The Schur functor is a continuous functor and therefore if
(E,V?) is a vector bundle with connection, then applying the Schur
functor gives us a vector bundle with connection (Sy(E), Sx(VE)). If
U, V be two vector spaces, the exterior power of a tensor product has
the following nice expression via the Schur functors :

(1) A U V) =P Sa(U) @ Sxa(V),

where Sy is the Schur functor with A running over all the Young
diagram with n cells, at most dim(U) rows, dim( V) columns, and X’
being the transposed Young diagram. Hence on the projective bundle
A F® S.(TZ")), there is a projective Hermitian connection

(2) P (Sx(VH) @ 1+10 8, (VST

Denote this projective bundle with connection by A™(VF, VS5(TZ* )

Pirsa: 20050050 e41/66 "
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In the following, when we write ¥(V¥, S.(TZ")), where 1 is certain
operations on vector bundles constructed from exterior power, it
always means the connections constructed in this way. For instance,

O(VF, VST = Q) A_u(VF, VHTZN)RR) A (VF, VETED)
u=1 u=1

is a Hermitian connection on the ¢-series with virtual projective
bundle coeflicients,

O(F® S.(TZ")) = @Aﬂt.(ﬁ‘@' S(TZH)) ® @ A_p(F® S(TZ1)).
u=1 u=1
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Definition

For the (projective) elliptic pseudodifferential operator P, define the
(projective) elliptic pseudodifferential genera Ell( P, T)

4r—21

L

ENP,7) = | [](1- ) -fzﬁ(Z)Ch(@(TZ))]I-]I(VF, v I(TZ7)y,

j=1

r

where

F oS.(TZY) _ (v 3T L (OF S5TZL i
H(VF, VT%)) = Ch¥y iy, (7, det(VZ, V3LTZ9)) . Chiy, o

((Aeven(vﬁ': VS{;[TZJ‘))_ADdd(vF} vSr:{TZJ‘))) R @(VF, VS,;{TZJ‘})) 1
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Theorem (H.-Mathai)

If ;i (TZ) = p1(P), then El(P,T) is a rational modular form.
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The second application of the construction of projective elliptic
genera is in T-duality.
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T-duality in an H-flux

[Bouwknegt-Evslin-Mathai]

(Zxx Z,|p*H) = [p*H))

2N

(Z, A, H)

NS
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T-duality in an H-flux

Hori’s formula
(3) THG:/E-M?‘ G
T

where G € Q°(2)7 is the total RR fieldstrength,

G e Qv Z2)T  for Type IIA;
G € Q°4¢(2)" for Type IIB.

Ty: Q52T = o1 (T, |

for k= 0,1, (where k denotes the parity of k) is isomorphism, inducing
isomorphism on twisted cohomology groups.

Ty B (2 B = H*'Y(Z H). |
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(Gerbe and gerbe modules

a gerbe G on M is a collection of line bundles {L,3} on double
overlaps, Log — Uy, = U, M Ug such that on triple overlaps U,z
there is a trivialization

ﬁb&ﬁ’}’ : Lu—,ﬁ’ & Lﬁ’}* & L"rﬂf i C J

Then {¢pap~} is a U(1)-valued Cech 2-cocycle gives the
Dixmier-Douady class of the gerbe in H?(M,7Z).

Upto equivalence, gerbes on Z are classified by H*(M,Z).

A trivial gerbe {Lqg} is of the form Log = Lo ® Lj, where
{Lo, — U,} is a collection of line bundles.
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(Gerbe and gerbe modules

A connection on the gerbe G is {(Lqgs, Vni }, a collection of line
bundles L,z — U,p such that there is an isomorphism
Lopg @ Lgy = Ly on Uyp~ and collection of connections {V ﬂ} such

that V%2; = d+ Anp (note that as H*(U, N Up) = 0, the bundle Lag
is trivial). Then we have

(Vé ) Fl-j" B_.S T Bﬂr'

C

H such that H|y = dB, is called the curvature of the gerbe.

A principal PU(n)-bundle is a model for a torsion gerbe (H = 0).
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(Gerbe and gerbe modules

[Bouwknegt-Carey-Mathai-Murray-Stevenson|]

Let {U,} be an open cover of Z and E = {E,} be a collection of
(infinite dimensional) Hilbert bundles E, — U, whose structure
group is reduced to Uy, which are unitary operators on the model
Hilbert space ‘H of the form

(identity + trace class operator).

Here tr denotes the Lie algebra of trace class operators on H. In
addition, assume that on the overlaps U,z that there are
isomorphisms ¢, : Lap @ Eg = FE,, which are consistently defined on
triple overlaps because of the gerbe property. Then {E,} is said to be
a gerbe module for the gerbe {L,z}.
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(Gerbe and gerbe modules

A gerbe module connection V¥ is a collection of connections {VE} is
of the form VZ = d+ AX where AZ € Q'(U,) ® tr whose curvature
Ff on the overlaps U,s satisfies
N L E
@u.ﬂ(Fm)(pﬂﬁ = Fnﬂf_l_ F:-‘i"
" L . .
Using F;3 = Bg — By, this becomes

":ID(:I; (Bﬂj_l_ Ff)ﬁbaj = B,-BI‘|‘ F'E

It follows that exp(—B) Tr (exp(—F¥) — I) is a globally well defined
differential form on Z of even degree. Notice that Tr(/) = oo which is
why we need to consider the subtraction.
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(Gerbe and gerbe modules

Let E={E,} and E' = {E.} be be a gerbe modules for the gerbe
{Los}. Then an element of twisted K-theory KY(Z, H) is represented
by the pair (E, E').

Two such pairs (E, F') and (G, G') are equivalent if

Fd G & K2 FEF & G K as gerbe modules for some gerbe module K
for the gerbe {L.z}. We can assume without loss of generality that
these gerbe modules E, E' are modeled on the same Hilbert space.
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(Gerbe and gerbe modules

Suppose that VZ VE are gerbe module connections on the gerbe
modules E, E' respectively. Then we can define the twisted Chern
character as

Chy : K°(Z,H) - H*"*™(Z, H)
Chy(E, E') = exp(—B) Tr (exp(—FE) - exp(—FE!)) J

When the gerbe is torsion gerbe, H = 0, we see that the twisted
Chern character lands in H*V*"(Z, C).

Pirsa: 20050050 Page 54/66



F# 248 sA25EM— 5 = a0

{ = M Proj ell and app @ Q [

Witten gerbe modules

Given a gerbe (non torsion) and a gerbe module pair (E, E'),
analogous to the Witten projective bundle for the torsion case, one
can construct the Witten gerbe module

(T)Q(E: E) - 'EBmEgK{](Z. mH)

To take the Chern character of the Witten gerbe modules, similar to
the projective Witten bundle case, we have to take into account of the
levels of twists and apply the twisted Chern character of twist mH
when the module has twist mH and mix them. So we take graded
twisted Chern character GCh g.

Unlike the projective bundles case, which are of finite rank, the gerbe
modules E, F' are infinite dimensional, and therefore there are some
analytic difficulties to overcome for the convergence of the graded
twisted Chern characters. We use the Holomorphic functional calculus
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Witten gerbe modules

The target space of the graded twisted Chern character are g-series
with coefficients being differential forms on Z, who are sums of

(d + mH)-closed differential forms for various m. To distinguish these
(d + mH)-closed forms for various level m, we introduce a formal
variable y such that if a form w is (d + mH) closed, we write w - y
Then the graded tw 1sted Character of the Witten gerbe modules take
values in Q*(2)[[y, v~ 1, q]] or Q*(2)[[y, v~ *, ¢"/?]]. One can formally
view them as spaces of twisted differential forms on free double loop
space, and a model for the configuration space for Ramond-Ramond
fields on this space. So we have

Tri

GChp(02(E, F)) € @ (2)[[y, v ", ¢/?]).
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T-duality and Jacobi forms

Let M be a manifold with H-flux. Let A*(M)(4+mm)— o denote the
space of holomorphic functions on H except for a set of isolated
points, which take values in Qk(ﬂﬂ(d_{_mm_dj the (d + mH)-closed
forms on M with degree parity k. Let HE(M, mH) denote the space of

holomorphic functions on H except for a set of isolated points, which
take values in H*(M, mH).
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T-duality and Jacobi forms

Denote g= e**V—1". r e H and y= e %"V~12 2z C. On M, consider
the 2-variable series

w(z,T) € @ ’H‘E(M, mH) - y™
meL

with the following properties : w(z, 7) is represented by

(4) Z wTTL(T)yTn?

with wn(7) € AE(M)(dern)—cg-, m € Z such that the degree p (with
p = k) component

(5) S (7)1

meZ

is the expansion at y = 0 of a Jacobi form of weight %”‘ and index 0

over L x I". Denote the abelian group of all such w(z,7) by
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T-duality and Jacobi forms

Theorem (H.-Mathai)
If C2((E,E) =0 and Ch(E, E') =0, then

GChp(©:(E, E)) € J3 (Z, H; Z*,T°(2)).
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T-duality and Jacobi forms

This motivates us to enhance to T-duality Hori map to graded Hori
map to handle this two-variable situation.
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T-duality and Jacobi forms

e

Consider the situation of T-duality with pair (Z, H), (Z, H). For
m € Z, define the level m Hori map by

T, . (C) = f e~mANA
T

for G is an T-invariant form on Z and (d+ mH)G = 0. As we have
mH = mH+ dmA A A),

it is not hard to see that 7 ,,G is a T-invariant form on Z and

(d+ mH)(Ts,m(G)) =0,
similar to the m = 1 case.
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T-duality and Jacobi forms

Denote ./-1;"( d i — ; the space of holomorphic functions on H

excel)t for a set of 1801&1:0(1 points, which take values in
QM Z)?} (db-mH)— ;, the ']I‘—invariant (d + mH)-closed forms on Z with

degree parity k Denote A‘E“( (dt-m)—cl the similar stuff on the dual

side. Define the graded Hori map
: ki oAT t k+1 ,
LT, : @ A Dfusmi-a V" = D A Dy iy V"
mez meL

by

) i

mes meZ
Passing to cohomology, we have the graded Hori map

LT: EB'H (Z, mH) - y" —>@’Hﬁ"+l mH) - y™
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T-duality and Jacobi forms

One can similarly define on the dual side,

T, kT ' k+1 1 1y 7
LT, @ A (Z)(d—l—-mm—c:i - ym - @ A +1(Z)(ff+mhr)_ﬂg Y l

meZ, ez

and

LT @ HE"(Z mH) - y™ — EB Hm(Z, mH) - y™.

mez meZ
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T-duality and Jacobi forms

Theorem (H.-Mathai)

Let H(H) denote the space of holomorphic functions on H. The
following identities hold :

(1)

0  V-19 —~ J vV—1 0
(9J o 02’ LTDLT__?’I(?@; " om0z

Lo lT= —y—

in particular when restricting to m #+ 0 parts, we get isomorphisms of

H(H) modules,

: k T k+1 T | il
LT;.: . @ "4 d—]—mH) e’ Y =t @ A ( (d-|—m,ff:]—{:f Yy
meZL, m7~0 meZL, m7=0

T krr M k+—1 T
IT.: @ ADgmiy-a V"> D A Dlarmm-a-v™
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T-duality and Jacobi forms

Theorem (H.-Mathai)

(i7) Restrcting to the Jacobi forms, we have
LT 752, H.L.T)Y) € 542, B L,T);

dually, we have

ﬁ*(mﬁ(z, B P)) c JHY(z B L,T).
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Thank you very much !
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