Title: Quantum homeopathy works: Efficient unitary designs with a system-size independent number of non-Clifford gates

Speakers: Ingo Roth

Series: Perimeter Institute Quantum Discussions

Date: May 27, 2020 - 4:00 PM

URL: http://pirsa.org/20050048

Abstract: Many quantum information protocols require the implementation of random unitaries. Because it takes exponential resources to produce Haar-random unitaries drawn from the full n-qubit group, one often resorts to t-designs. Unitary t-designs mimic the Haar-measure up to t-th moments. It is known that Clifford operations can implement at most 3-designs. In this work, we quantify the non-Clifford resources required to break this barrier. We find that it suffices to inject $O(t^4 \log^2(t) \log(1/\hat{\mu}))$ many non-Clifford gates into a polynomial-depth random Clifford circuit to obtain an $\hat{\mu}$ -approximate t-design. Strikingly, the number of non-Clifford gates required is independent of the system size $\hat{a} \in$ " asymptotically, the density of non-Clifford gates is allowed to tend to zero. We also derive novel bounds on the convergence time of random Clifford circuits to the t-th moment of the uniform distribution on the Clifford group. Our proofs exploit a recently developed variant of Schur-Weyl duality for the Clifford group, as well as bounds on restricted spectral gaps of averaging operators. Joint work with J. Haferkamp, F. Montealegre-Mora, M. Heinrich, J. Eisert, and D. Gross.

Quantum Homeopathy Works: Efficient Unitary Designs With A System-Size Independent Number Of Non-Clifford Gates

Ingo Roth

Jonas Haferkamp

Felipe Montealegre-Mora

Markus Heinrich

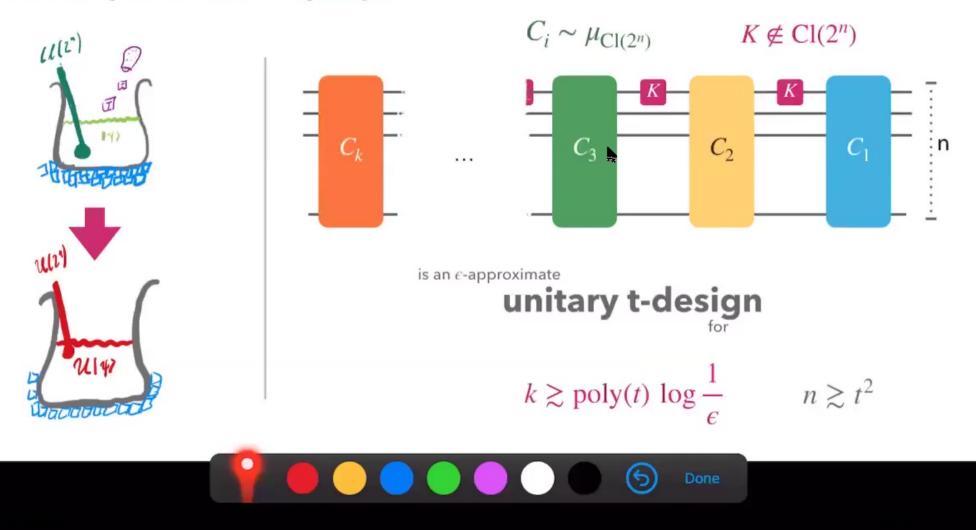
Jens Eisert

David Gross

is Heinrich

IN A NUTSHELL

What is quantum homeopathy?



Outline

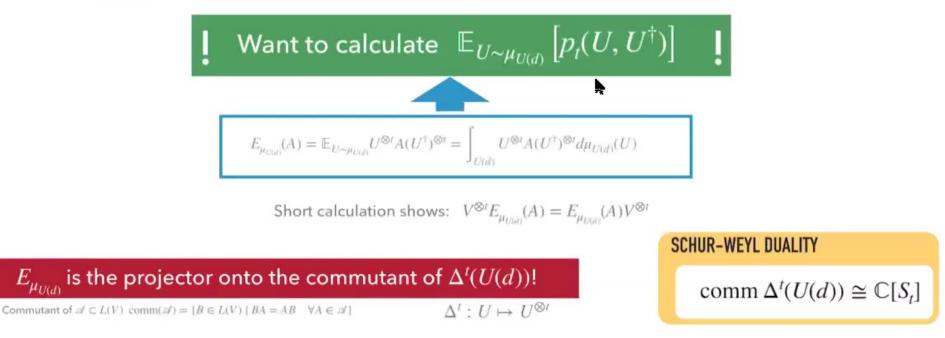
- Motivation for 'simple' t-designs
- Clifford group 1, 2, 3, and ...?
- PLAN I: Moving the target
 - Example low-rank Randomised Benchmarking tomography
- PLAN II: Adding magic (non-Clifford gates)
- Summary

Applications of Haar-random unitaries

- Demonstration of Quantum advantages
- Dynamics of mixing processes, models of black-holes
- Quantum system identification
 - Randomised benchmarking [...]
 - Shadow estimation [Huang, Kueng, Preskill 2020]
 - Low-rank quantum tomography [..., IR, Kueng, Kimmel, Liu, Gross, Eisert, Kliesch 2018]

A moment please

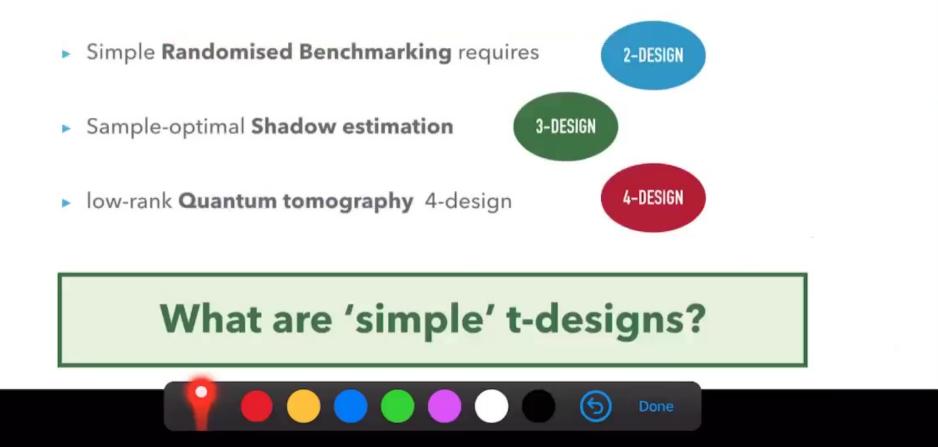
Polynomials of degree t $p_i(U, U^{\dagger}) = \operatorname{Tr} \left[B U^{\otimes t} A(U^{\dagger})^{\otimes t} \right]$



The same holds for the twirling of any invariant (Haar) measure, e.g. the uniform measure on finite subgroups.

Applications of t-designs

Quantum system identification



The Clifford group

$$Cl(2^{n}) := \left\langle \left\{ S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, CZ = diag(1, 1, 1, -1) \right\} \right\rangle$$

PHYSICAL REVIEW A 96, 062336 (2017)

Multiqubit Clifford groups are unitary 3-designs

Huangjun Zhu*

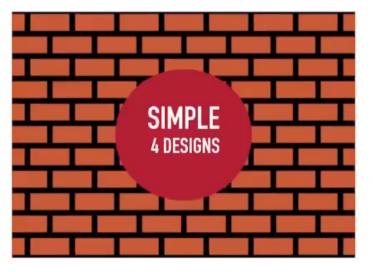
THE CLIFFORD GROUP FORMS A UNITARY 3-DESIGN

ZAK WEBB¹

Quantum Information & Computation, 2016

The Clifford group fails gracefully to be a unitary 4-design

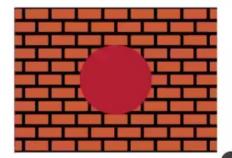
Huangjun Zhu¹, Richard Kueng¹, Markus Grassl², and David Gross¹



Unitary t-design that are subgroups = t-groups

4-groups do **not exist**, and the Clifford **group** is unique maximal group design.

[Banai, Navarro, Riso, Tiep '18] & [Sawicki, Karnas '17], summarised in [HMHEGR'20]



PLAN I "Breaking through" the wall by moving the target. ; 0 \sim

🧧 🛑 🧼 🔵 🔵 🕘 🌑 🌀 Done

PLAN I

Commutant of the Clifford group

 $\operatorname{comm} \Delta_{\operatorname{Cl}(2^n)}^t \supset \operatorname{comm} \Delta_{U(2^n)}^t \cong \mathbb{C}[S_t]$ $= \langle r(T_\pi)^{\otimes n} \mid \pi \in S_t \rangle$

For **permutation** $\pi \in S_I$ define

 $T_{\pi} = \{ (\pi(x), x) \mid x \in \mathbb{Z}_2^t \} \quad \text{and} \quad r(T_{\pi}) = \sum_{(x, y) \in T_{\pi}} |x\rangle \langle y|$

 $r(T_{\pi})^{\otimes n}$ simultaneously permutation *n* qubits.

$\frac{1}{1} r^{\otimes 2}(T_{t}) = \frac{1}{1}$

Definition

 $T \subset \mathbb{Z}_2^t \times \mathbb{Z}_2^t$ is a stochastic Lagrangian subspace if 1. $x \cdot x = y \cdot y \mod 4$ $\forall (x, y) \in T$ 2. $\dim(T) = t$

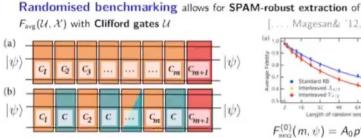
3. $(1, \dots, 1) \in T$

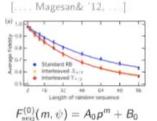
Theorem [Gross, Nezami, Walter '17] $\operatorname{comm} \Delta_{\operatorname{Cl}(2^n)}^t = \langle \{ \operatorname{Lagrangian subspaces} \} \rangle = \langle \Sigma_t \rangle$

PLAN I - EXAMPLE

[IR, Kueng, Kimmel, Liu, Gross, Eisert, Kliesch '18]

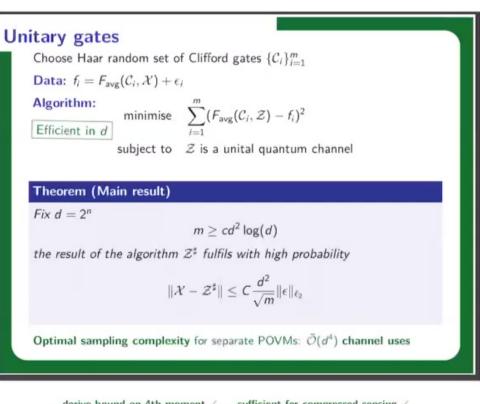
SPAM-Robust tomography of unitary gates





Randomised benchmarking: SPAM-robust

Compressed sensing: exploits low-rank structure



... derive bound on 4th moment & ... sufficient for compressed sensing &

PLANIE: Really "breaking through" with a pinch of universality

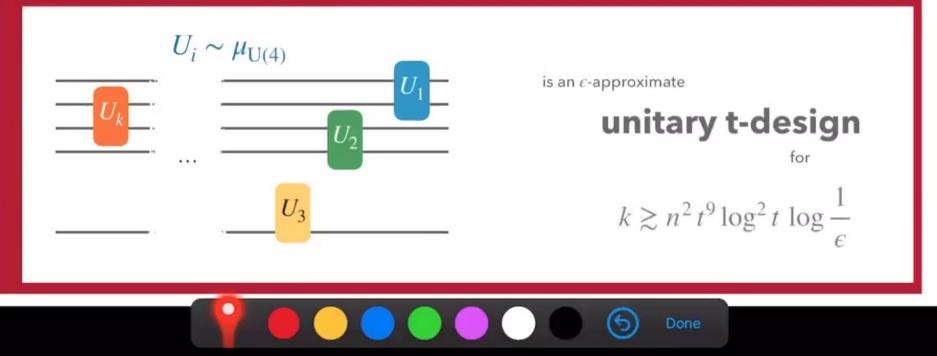
T-designs via quantum circuits

Definition

A measure σ on U(d) is an ϵ -approximate unitary t-design if

$$\|E_{\sigma} - E_{\mu_{U(d)}}\|_{\diamondsuit} \leq \epsilon$$

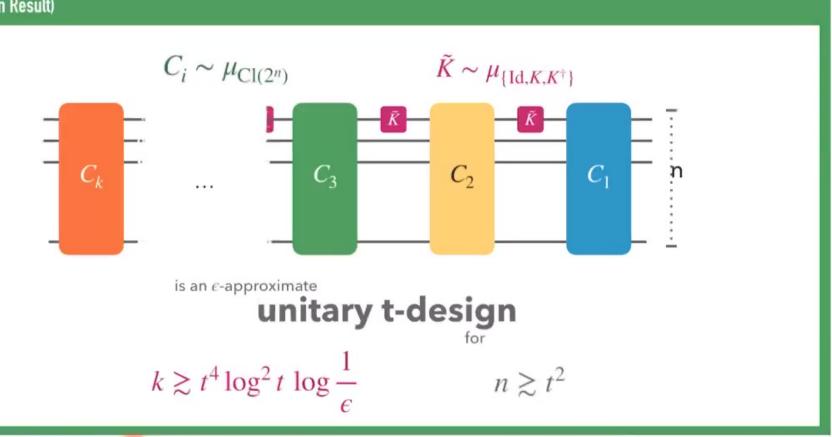
Theorem [Brandão, Harrow, Horodecki, 2016]



PLAN II

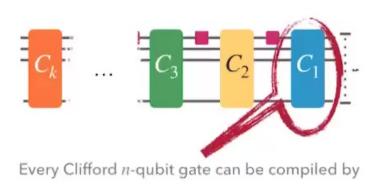
T-designs via (mainly) Clifford circuits

Theorem (Main Result)



Done

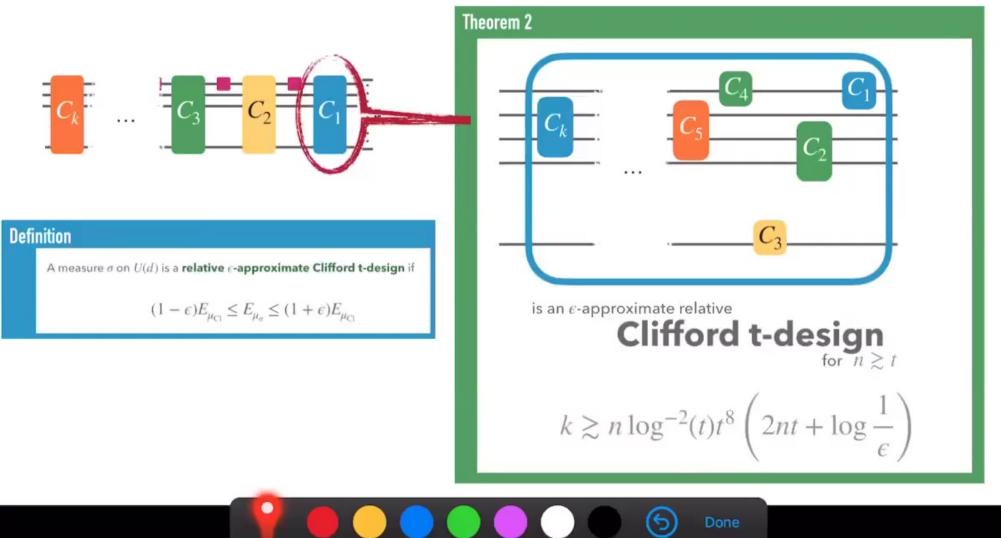
Comparing Local Circuits



$$O\left(\frac{n^2}{\log(n)}\right)$$
 local gates. [Aaronson & Gottesman '04]

Corollary 2 An interleaved Clifford quantum circuit with $k_{\text{overall}} \gtrsim \frac{n^2}{\log n} t^4 \log^2 t \log \frac{1}{\epsilon}$ gates is an ϵ -approximate **unitary t-design**

Random Clifford Circuits



PROOPSKETCH 2) Rewrite moment operators as deviations from the Haur unitary case $E_{\sigma} - E_{\mu_{u}} = \left[\left(E_{\mu_{u}} - E_{\sigma} \right) K \right]^{n}$ projector outo ii) construct the projector onto <IENSE? < E6 \SE ?

iii) carefolly bound all terms $||E_{-} - E_{\mu_{u}}||_{s} \leq 2^{O(t^{4}) + t \log h} (1 + 2^{O(t^{2}) - \eta})^{5h} \eta^{h-1}$

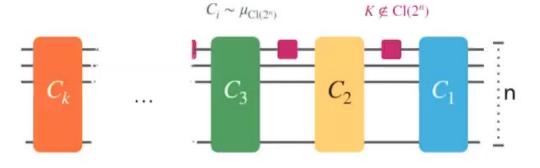
Lemma: $\begin{aligned}
 1 &:= \max_{T \in \mathcal{Z}_{t} \setminus S_{t}} \left[T_{r} \left[\overline{r}(T) K r(T') \right] \right]
\end{aligned}$ 1 - c(K) log -2 t Varju's (2013) bound Lomma: on restricted spectral gups. $T_r\left[\tilde{r}(T) E_{\mu_u} \tilde{r}(T)\right] \leq \frac{7}{8}$

PROOPSKETCH 2) Rewrite moment operators as deviations from the Haur unitary case $E_{\sigma} - E_{\mu_{u}} = \left[\left(E_{\mu_{u}} - E_{\mu_{u}} \right) K \right]^{n}$ projector onto ii) construct the projector onto < ZE \SE ? < E6 \SE ?

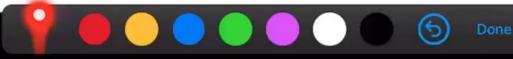
 $iii) \quad carefolly \ Sound \ all \ terms$ $||E_{\mu} - E_{\mu_{\mu}}||_{s} \leq 2^{O(t^{4}) + t \log h} (1 + 2^{O(t^{2})^{-n}})^{5h} \eta^{h-1}$

0 🛑 🕘 🔵 🛑 🕘 💮 🌀 Done

Summary



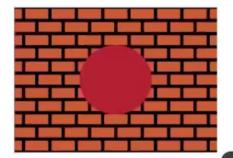
- . Adding $\tilde{O}\left(t^4\log\frac{1}{\epsilon}\right)$ non-Clifford gates yields an ϵ -approximate t-design. Independent of the system size!
- Convergence bound for local random Clifford
- New tools for studying the commutant of the diagonal action of the Clifford group



arXiv: 2002.09524

Unitary t-design that are subgroups = t-groups

4-groups do not exist, and the Clifford group is unique maximal group design.



summarised in [HMHEGR'20]