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Abstract: Given the large push by academia and industry (e.g., IBM and Google), quantum computers with hundred(s) of qubits are at the brink of
existence with the promise of outperforming any classical computer. Demonstration of computational advantages of noisy near-term quantum
computers over classical computers is an imperative near-term goal. The foremost candidate task for showing this is Random Circuit Sampling
(RCS), which is the task of sampling from the output distribution of a random circuit. This is exactly the task that recently Google experimentally
performed on 53-qubits.

Stockmeyer's theorem implies that efficient sampling allows for estimation of probability amplitudes. Therefore, hardness of probability estimation
implies hardness of sampling. We prove that estimating probabilities to within small errors is #P-hard on average (i.e. for random circuits), and put
the results in the context of previous works.

Some ingredients that are developed to make this proof possible are construction of the Cayley path as a rational function valued unitary path that

interpolate between two arbitrary unitaries, an extension of Berlekamp-Welch algorithm that efficiently and exactly interpolates rational functions,
and construction of probability distributions over unitaries that are arbitrarily close to the Haar measure.
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Quantum computers are here...

» NISQ capable of a computational task that is
practically impossible on classical computers?

» Milestone— violate Extended Church-Turing thesis

IBM Q : quantum computer

» Lead candidate: Random Circuit Sampling (RCS)

* Google experimental demonstrations
Arute+ Nature (2019), S Boixo+ Nature Phys. (2018)
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Architecture A : Distribution JH 4 Problem Statement
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Problem Statement

Prove: There exists an architecture “A such that estimating

po(C) = [(0™|C0™) |*  +e

is #P-Hard for C~3H 4 (i.e., on average)

&

A
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po(C)
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Today we prove:

1. There exists an architecture ‘A such that
po(C) = (0™|C|0™) |
is #P-Hard for C~3 4 (i.e., on average)

2. Estimating to € —neighborhood is also #P-Hard
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Average Case Hardness of py(C)




(Traditionally) Reduction idea for average case hardness [Lipton ‘98]:

(1) There exists a ‘worst case’ circuit for which : Bremner-Josza-Sheperd (2011)
9 ettt _ __ ~ Terhal-DiVincenzo (2004)
po = | (0™|C|0™) | is #P-Hard (harder than NP)

(2) Deform the circuit from worst to ‘average case’:

C C(0)
po = | (0™[C[O™) | po(6) = | (0™|C(B)|0™) |
where 8 € R and:
C (1) = po(1) is worst-case instance (#P-Hard)

C(0) € H,4= py(0)is average case instance

A
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C C(0)

— & C [ —1¢1(0) Cp(e)l——
C, e a@ey|® °°
— G Cq — —lcz(e) cq(a)l_
° o ¢ & o : Ck - Ck(e) : : ¢ o o :
Ck e o o Cm Ck(g) e o o Cm(g)
s N .
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(Traditionally) Reduction idea for average case hardness [Lipton ‘98]:

Deform circuit from worst to ‘average case’:
Po (9) = | (On|C(9)|0n) |2 Polynomial of low degree (e.g. poly(n))

Average case
(random circuit) * Assume: classical efficient algorithm O

po(1) » #P — Hard calculates py(8) with high probability

9o (6) * Call O d+1 times: To get (8, p(8))) .
0

* Write po(0) exactly and efficiently!

53 * Extrapolate to po(1) , which is #P-hard

i
A=o0(1) 0=1 X Contradiction X
eg,A=1/poly(m)  conclude : There does not exist O that can efficiently calculate po(8) for 8 € [0, A]

6
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The key question is...

How are we to deform C — C(0) such that

po(6) = | (0™|C(6)|0™) |7
is a low degree polynomial or algebraic
function?

Ck(1)= Cy

H, € Haar = (C,(0)=C,H, € Haar

By definition of Haar measure.

=
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nature_ ART'CLES
phy SICS https://doi.org/10.1038//541567-018-0318-2

On the complexity and verification of quantum
random circuit sampling

Adam Bouland', Bill Fefferman:'?*, Chinmay Nirkhe "' and Umesh Vazirani'

u(N)

Ce(0) = CLH, e~i0M2

— O —
- .

Truncate Taylor series of
o —i0hy

-
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e ARTICLES u(N) o)
O

P YSICS https:/doi.org/10.1038 /s41567-018-0318-2

On the complexity and verification of quantum
random circuitsampling [ T ---__

— S — — —
" —

AdamBouland’, Bill Fefferman ©'?*, Chinmay Nirkhe @' and Umesh Vazirani'

Define hy such that HY = e~  for some hj = hl

_ -i0h ) |_ =
Use: Ci(0) =CH e " ~ C.H, {Zﬁ’:o%} = C,(0) Non-Unitary gates
& C=CpCpyq..C;C; —> C(0) =C(0)..C,60)C,(0) Non-Unitary circuit 9
O,
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e = 27" /poly(n)

o Recall the goal is: £ ' A ‘
i

S ——
po(C) PolC)

o Bouland et al (Nature Physics 2018) show
« The distribution over C (8) is close to the distribution over C(8)
» Calculating py(C ) is #P-Hard on average

* They claim an &' = exp(—poly(n)) robustness, which we prove unnatural:
» Spoiler: If one inputs a circuit then degree of polynomial is exp(+poly(n)) !!
So they need to assume that the classical algorithm takes as input the specific non-unitary circuits
[for more: Appendix A in Napp et al 2020)]

10
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O: (Qup(gl) e Ei) for 91’ € [O,A]

@;"l
Po(6) - Po(1) = po(1) —» #P — Hard
Dyer+ (2004)

po(6) 6

i
[EY

AKL1 6

L

Pirsa: 20050022 Page 15/30



Bouland et al (2019)

Let: p(8) = po(6) — Po(6)

4 B
(Paturi’s Lemma) Suppose p(6) is a degree d polynomial and that
|p(0)| < e for 8 € [0,A] then

Ip(1)] < ce2d(1+a™1)
hS 4
Recall A= 1/poly(n) : |po(1) — Po(1) | < ge2d(1+477)

=i
[Bouland et al: truncation] < e0(mn-LInL),2d(1+a™1)  SYSTEMATICI!

< e0(mn-L InL)g2(2Lm)(1+A71)

o L > 0(exp(4m A—l)) I < pO(mn+L(4ma~-InL)) oo 12
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Cayley path and Quantum Supremacy

arXiv:1909.06210




Cayley Function :
1+ix
1—ix

flx) =

where f(—o) = —1

+Im

C oo A
/

> bijection
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Efficient unitary-valued path between any two unitary matrices:

H unitary: H = f(h), h=ht

HY = f(=h)

14
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Procedure

Given worst case circuit with m gates:

C1,Cy, ..., Cy,

Generate corresponding m random Haar gates:

Hj jH15; sy Moy

Easy and efficient.

15
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C, (0) is rational function valued unitary matrix
By eigenvalue decomposition H;,, = f(hy):
hk = g{:l halwaz)(lpa Ls = {ZA'}

We find that

Cr(0) = CH f(—0hy) = N _102(0) (CrlpaXWal)

W

q(0) = [Ig=1(1 + i6hg)

P (0) = f(ha)(1 — i6hy) Mpenpa(l + i0hg)

[ Entries of C, (@) are rational functions of degree (N, N) 16}
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C = CmCm—l Ck C2C1

C(0) = C H,f (—6hy)

Entries are rational functions of degree (N,N)

C C()
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C C(0)
— Cp e —]C1(0) @7
Cl (=3 (5] (5] Cl(e) (o] (o] (o]
— & Cq :0) C4(®)
N e e C,— Cr(0) e .
e |- lc, @ | o oo |cu0
—c, - —c.( —
Cr (0) = C,, H,f (—6hy,)
18
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po(C) = [(0"|C[O™) | [ Po(0) = I‘(0”IC(Q)IO""")’I2 J

—
1

(1,1)- entry of C(0)

E Po(0) is a rational function of degree (2mN, 2mN) J

19
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One slide on further technical ingredients

Crucial to reconstruct py(8) with high probability despite noise.
Algorithm (Berlekemp-Welch for rational functions)

Suppose F () is (kq, k,) rational function. Given (64, f(01)), ..., (6, f(6,,)), find a
rational function F () of degree (k4, k,) exactly by evaluatingitat n > k; + k, + 2t
points despite t errors in the evaluation points.

To prove supremacy: Also Crucial that the circuit is close to }[ﬂ

Theorem : Consider (NXN) operator f(h)f(—6h) for 8 «< 1. This operator is 0(+/6)
close in TVD to the Haar measure. Therefore, a circuit with m gates is O(mx/g) close
to 5{/4 in total variational distance (TVD).

20
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Average-case hardness:

€ N
Theorem: Let ‘A be an architecture such that computing p,(C) is

#P —Hard in the worst case. Then it is #P —Hard to compute
% + 1/poly(n) of the probabilities po (C) over H 4 |
\ Yy

21
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O: (8;,p(0;) *¢;) forf; € [0,A]

Po(6) - Po(1) = po(1) » #P — Hard
Dyer+ (2004)

po(6) 6

i
=

AKL1 6

22
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a )
Theorem (Robustness): It is #P — Hard to compute p,

over H 4 to within ¢ = 2-90mA7") a4ditive error.
A 4

In practice:

Qe =290 for constant depth circuits
Qe =2"9M) for a quantum circuit on a i Xy grid and depth v

(Google Circuit)

e : . A

Supremacy Conjecture: It is #P — Hard to compute p,
. i ..

over H 4 to within ¢ = additive error.

\_ poly(n) J

23
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Open questions

»Improving robustness to 27 "poly(1/n) proves the supremacy conjecture.

»Supremacy conjecture even true for constant depth circuits?! (Napp et al 2019)

» Cayley path for:

* Quantum computing by interpolation

» Cryptography and circuit hiding; Blind quantum computing
» Cayley path optimal in some sense?

»Proof not based on interpolation?

24
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| salute you for your interest and attention!
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