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Abstract: We introduce a new technique to study the critical point equations of the eprl model. We show that it correctly reproduces the 4-simplex
asymptotics, and how to apply it to an arbitrary vertex. We find that for general vertices, the asymptotics can be linked to a Regge action for
polytopes, but contain also more general geometries, called conformal twisted geometries. We present explicit examples including the hypercube,
and discuss implications.
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One path for the semiclassical limit of loop quantum gravity

On a fixed graph:
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o iny Spin networks + Twisted geometries
Ji .
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dynamics

Spin foams well>  (exp of) Regge action © / Dga €' Srense(92)

Then study refinement to increase number of degrees of freedom to relevant physical question...
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Outline of the talk

 There exist a covariant framework for the dynamics of LQG, known as spin foam formalism
e State of the art: the EPRL model

* This is particularly developed in the case of 4-valent spin networks, which are dual to 3d simplicial

triangulations and presents a simple interpretation in terms of discrete geometries

* For these, the spin foam amplitude for one 4-simplex is dominated in the semiclassical limit by
exponentials of the Regge action

* Quite a nice state of affair, even though much more work is needed
(notably on the semiclassical limit of an extended triangulation and curved solutions)

* An open question is the semiclassical limit for non-simplicial vertices
relevant since the LQG Hilbert space contains a priori states of any valency

Kaminski:Kisielowski:Lewandowski: Spin-Foams for All Loop Quantum Gravity 0909.0939
Ring-Han-Rovelli: Generalized Spinfoams 1011.2149
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EPRL general vertex amplitude

Blank
o @
Change Master
- The EPRL vertex amplitude is a real function associated to any oriented graph with N nodes and L links:
o Appearance
2 N Title
Ar(Jab, Mab, Nas) f H dh, l__[ IJ'MJ‘".:*I.“ (ho'hy) Body
a=2 {ab) J/‘ Slide Number
Coherent vertex amplitude: replace the SU(2) magnetic numbers with SU(2) coherent states » Background
Anidea born at Pl... (Livine-S ’07)
3 Edit Master Slide
4 ' In the limit when all spins are large, the coherent amplitude decays exponentially, except for special

configurations where the decay is power law.
The special configurations admit an interesting geometric interpretation, and so does their frequency of

oscillations
The model uses only the “y-simple’ representations defined by the Y-map:

(Pab, kab),  Pab = Ykab,  Jab 2 Kab = Kap

The saddle point analysis with non-simple representations is harder

With the simple ones, it is almost as easy as for the Euclidean or BF models

The results are also very similar, except for the main difference that Lorentzian boundary data can have

power-law behaviour
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Two sets of spinors
Q@
1. The infinite-dimensional unitary irreps of the principal series can be realized on C?
! 3 Ar(Jab, Map, Nap) = f H dh, [ | pieael 2 thy)
|abj

=  D(h) = integrals over spinors z k

2. The SU(2) CS are more conveniently described by a spinor than a unit vector: { such that 7 = —((|&|()
Two advantages of using coherent states:

» introduce a finer charagterization of the boundary data: an orthogonal intertwiner gives a maximally spread 3-geometry
« permit to factorize the explicit expressions for the matrix elements and write them as a single exponential
Coherent vertex amplitude:
5

Ar(Jab, flaby —Tipa) = € Ltas) Jab Vot H 4o /Hi f]'[ dji(zap)

oty Ikzas I} e
t | A1~ 1hTs A2
S(h2) = 3 oplog eZesllat Lalhiar” 5 1o
ey 1 zabl? [} zas

exp S

Rl zas)?
"hbzab”

* The action does not have a manifest link to (discrete) general relativity; so the classical dynamics of the
model is open for investigations. One possibility is that a link to GR emerges in the large spin limit

* The action is linear in the spins: large spin asymptotics can be studied using saddle point approximation
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Saddle point approximation

Approximate the integrals with Gaussians around critical points of the action: 95 = ()

Because the action is complex, critical points can have different real parts of the on-shell action
5 = ReS™ +4ImS™
= Those with maximal value of the real part will be exponentially dominating wrt the others
* Focus attention on the maximal critical points ReS‘’ = max
L3
This turns out to have a significative technical advantage:

the conditions for a maximal Re(S) are simple to solve, and simplify in turns the gradient equations

With this condition, the critical point equations are:

» group element gradient: zjubﬁub =0, Va.
b#a

* spinor gradient: (Cablhy ' FhalCab) = [Coalhy '@hs/Cha],  equations determining the hg;

. h!z .
[Coally thalas) = Ihy “Ht” ab=Vba)

Ih;:(,;,|/¢
phases for the z spinors

These and the max Re(S) eqs determine the spinors
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Boosted orientation equations
a Blank
@

The egs determining the spinors are trivial. All the fun of the game is to determine the group elements.

Change Master
Focus on the group element egs:

Appearance
-1 ~ =1 = - ;
(C(}.b|ha Inhu Lab) = [gbu hb th‘gbu] [ite

Body
First thing, let’s get rid of the spinors.

Slide Number
Without loss of generality, we can rewrite these egs in terms of vectors alone:

» Background

[Haﬁab - —Hbfibaj boosted orientation equations (BOE)

Edit Master Slide

where:  Hii := ((|h~'Gh|C), @ =—(C|#|¢)
k

* His the 3d (non-unitary) irrep of h

« explicitly,

(¢|h=*8h|¢) = coshr Ui — isinhr @ x Ui + (1 — coshr) (7 - UR)¥

This can be recognized as the Lorentz transformation of a self-dual bivector, with vanishing magnetic part
and thus real self-dual part given by the vectorn

The bivector can be written explicitly as B}, := e, x1t"n”

t! = (1,0,0,0)
n' = (0,7)

where we have introduced
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Why are such special bivectors popping out? Bt = ersrptint

We are also selecting lowest weights in the basis diagonalizing the canonical SU(2) matrix subgroup (Y map)

It is this choices that introduces a preferred time-like direction,
and selects this class of bivectors.
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The obvious solution

Blank

Change Master

There is an obvious solutions to the BOE ~ H,7iap = —HpTipa
Appearance
Title
, . . o ke Body
Consider a configuration with  7iap = —7ipa Slide Number
& BOE solved by H, = 1 for all nodes Backaroond

Edit Master Slide
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The obvious solution
Blank

Change Master

There is an obvious solutions to the BOE ~ H,7igpy = —HpTlpa
Appearance
Title
, . . o ke Body
Consider a configuration with 7ias = —7iha Slide Number
& BOE solved by H, = 1 for all nodes Backroond

More generally, if the boundary normals satisfy R, = —Ryfipa, N Ba€ SO(3)
Edit Master Slide

& BOE solved by H, = R, € SO(3) forall nodes

The non-trivial question is whether there exist additional solutions,
and whether there are solutions with H, ¢ SO(3)

This is what requires all the work!

Boundary data satisfying ~“were called vector geometries by Barrett

This is a good time to pause,
and take a detour on the geometry of the boundary data, regardless of the saddle point analysis
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Blank

Classifying the boundary data: from 3d to 4d geometries

* Generic data: a triple (jus, fias, 7isa) per link. /\/‘\.),\ <\j> Change Master
(A subset of the twisted geometry parametrization) ;

D Appearance
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Classifying the boundary data: from 3d to 4d geometries

. Blank

 Generic data: a triple (jup, fias, fisa) Per link. /“.?/'_\. <\j> Change Master

(A subset of the twisted geometry parametrization) ' _

s(l) g \
. #i ‘ V< Appearance
. ~— 2 Title

* Closed data: a collection of polyhedra dual to the nodes, Z ) % s

with shape mismatch at the faces: twisted geometries o o " Slide Number

» Background

Edit Master Slide
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Classifying the boundary data: from 3d to 4d geometries

. Blank
* Generic data: a triple (jus, 7ias, isa) per link. ﬂ‘-}’], <\j> Change Master
s ) l
(A subset of the twisted geometry parametrization)
4 "fﬂ_‘x\ . #i Appearance
~— Title
« Closed data: a collection of polyhedra dual to the nodes, — Body
. . . . Z JabTias = 0, Va.
with shape mismatch at the faces: twisted geometries e Slide Number
i . » Background
) * Vector: a subset of twisted geometries TP |
satisfying the orientation conditions 7 : [

Edit Master Slide

R{Lﬁab = “Rbﬁ:bdj Ba. € SO(S)
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Classifying the boundary data: from 3d to 4d geometries

Blank

* Generic data: a triple (jus, 7ias, 7sa) per link. /\/‘\.),\ <\j> Change Master

(A subset of the twisted geometry parametrization) ' .

"ﬂ_\\ : I ‘ / = Appearance
Nt i _‘ l Title
* Closed data: a collection of polyhedra dual to the nodes, Z jubita = 0 Va - ' 9, \ Body
JabTap = U, L.
with shape mismatch at the faces: twisted geometries e - " Slide Number
i i A \ r L » Background

* Vector: a subset of twisted geometries 7 A =

satisfying the orientation conditions 4. R

R“ﬁab = ﬁRbﬁba, Ba € SO(S) =

* Conformal, or angle-matched: a subset of twisted geometries satisfying the angle-matching conditions

1

cos (,f}fil f-cosdy,, cosgf,  cosdh, + cos @}, cos ¢ 0 (there are equivalent ways of writing them)

[:1H

Crape : sin ¢!, sin ¢ sin ¢! sin ¢®
ab® bl Pact Per

They can be split into Euclidean, and Lorentzian, according to the spherical cosine laws.
In the first case, they are a strict subset of vector geometries.
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Classifying the boundary data: from 3d to 4d geometries

. Blank
: e Generic data: a triple (jup, fias, fisa) Per link. /“.?/'_\. <\j> Change Master
: 5 ' !
(A subset of the twisted geometry parametrization) :
sl f"‘"““\-\‘/ Hl ‘ / < Appearance
. Title
Body

¢ Closed data: a collection of polyhedra dual to the nodes, Z L 0 v
JabTlah = U, a.

with shape mismatch at the faces: twisted geometries Slide Number

b#a

» Background

* Vector: a subset of twisted geometries O |

satisfying the orientation conditions _ _
Edit Master Slide

Rafigy = —Ryfine,  Ra € SO(3) -

» Conformal, or angle-matched: a subset of twisted geometries satisfying the angle-matching conditions

cos ¢, + cosgl, cosdly  cos ¢S, + cos gl cos @l 0 (there are equivalent ways of writing them)

Craype sin ¢!, sin @2 sin ¢! sin ¢®
ab 511 Py PacSM Py

They can be split into Euclidean, and Lorentzian, according to the spherical cosine laws.
In the first case, they are a strict subset of vector geometries.

* 3d Regge: the subset satisfying
full shape-matching conditions
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Classifying the boundary data: from 3d to 4d geometries

. Blank
e Generic data: a triple (jun, fias, fisa) Per link. /“.?/'_\. <\:> Change Master
(A subset of the twisted geometry parametrization)
s(l) e

I'
|
\/ ) . ‘ / ‘4 Appearance

Title
* Closed data: a collection of polyhedra dual to the nodes, Z jupian = 0 s

Ya.

with shape mismatch at the faces: twisted geometries Slide Number

b#a

» Background

* Vector: a subset of twisted geometries |

satisfying the orientation conditions _ _
Edit Master Slide

Rafigy = —Ryfine,  Ra € SO(3) -

» Conformal, or angle-matched: a subset of twisted geometries satisfying the angle-matching conditions

cos ¢, + cosgl, cosdly  cos ¢S, + cos gl cos @l 0 (there are equivalent ways of writing them)

Craype sin ¢!, sin @2 sin ¢! sin ¢®
ab 511 Py PacSM Py

They can be split into Euclidean, and Lorentzian, according to the spherical cosine laws.
In the first case, they are a strict subset of vector geometries.

« 3d Regge: the subset satisfying
full shape-matching conditions

* Flat-embeddable 3d Regge: the subset that describes the boundary geometry of a 4d polytope
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More on conformal twisted geometries
Blank

They have two non-trivial geometric properties, that play a crucial role in the saddle point analysis: r—T

* By having a well-defined valence for each face dual to the link, conformal twisted geometries introduce a Appearance
map from cycles of the graph to edges of a cellular decomposition. Lo
Body
Slide Number
*» They assign a unique 4d dihedral angle to each face, via the spherical cosine laws (SCL).
» Background

A

Edit Master Slide
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Conformal twisted geometries and spherical cosine laws

Blank
For general data, we can define the 3d dihedral angles from the normals Change Master
flab - Mlac cos ¢p,. Appearance
We can use them to define 4d dihedral angles via the spherical cosine laws (SCL) ;n:’
ody
Range determined by the boundary data: ScellEDey
go. _ o8 @b, + cos ol, cos ¢% » >1, Lorentzian, co-chronal (thick wedge) » Background
COBUa1 = "~ e 2T =g 2
. sin ¢}, sin 6§, * [-1,1], Euclidean
g * <-1, Lorentzian, anti-chronal (thin wedge) Edit Master Slide

This definition depends on the edge chosen.

When the 2d angles match, the expression becomes independent of b, and defines a unique 4d angle

Pirsa: 20050020 Page 19/33
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Conformal twisted geometries and spherical cosine laws

For general data, we can define the 3d dihedral angles from the normals

i
be

flab - Ta cos ¢
We can use them to define 4d dihedral angles via the spherical cosine laws (SCL)

Range determined by the boundary data:
cos ¢b,; + cos gL, cos ¢F, * >1, Lorentzian, co-chronal (thick wedge)
sin ¢}, sin 6§, * [-1,1], Euclidean

* <-1, Lorentzian, anti-chronal (thin wedge)

o QP =
cosfl,, =

v ' -

This definition depends on the edge chosen.

When the 2d angles match, the expression becomes independent of b, and defines a unique 4d angle
) This is enough for simplices, whose edges are dual to 3-cycles.

Giom bby
i .
fANY O e .3 wh,  Successive use of SCL shows that
/ \ Abab COS @y, + COSQF 4 COS Py, .
o PR , 008l = i the 4d edge-dependent dihedral angles
\ aoby k. sing] , sindgza, )
/ ) depends on all nodes entering the cycle

Again for angle-matching data, the definition is edge-independent and there is a unique 4d angle
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4-simplex asymptotics revisited
Blank

Egs to solve: H.flap = —Hyhpa . 1 Change Master
1] =

| Appearance
Title
Body
- % Slide Number
f
3 % » Background

/

/ Edit Master Slide
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4-simplex asymptotics revisited

Blank
Egs to solve: H.flap = —Hyhpa . 1 Change Master
1] =
* Look at eqs 1a: l Appearance
Title
| - -
Mg = —Hafa1 Body
E % Slide Number
* Use gauge freedom at node a to rotate normals antiparallel to 1: i
3 / » Background

Nia = —MNal

/ Edit Master Slide
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4-simplex asymptotics revisited

Blank
b EC|S to solve: 1.{” ﬁub = — Hbﬁbu ] Change Master
h[ =1
* Look at eqs 1a: l Appearance

Title

* = = =

Mg = 7[{a.'”‘a1 — Ha‘f.m Body

Slide Number

* Use gauge freedomjat node a to rotate normals antiparallel to 1:
Background

Nia = —MNal

Edit Master Slide
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4-simplex asymptotics revisited

Blank
7 ¥ EC|S to solve: 1.{” ﬁub B —I'Ibﬁbu ' 1 Change Master
1] =
* Look at &qs 1a: ] Appearance

R Title
- = = ! - - ~
filg = —Hghllg1 = Hyft1a & [ he = texp (_)w“n“l . G)J wa €C Body

k — Slide Number

* Use gauge freedomjat node a to rotate normals antiparallel to 1:

Nia = —MNal

Edit Master Slide

) 2
/ » Background
//

All directions determined. Use remaining egs ab to solve for w,
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4-simplex asymptotics revisited

Blank
Egs to solve: H,iia, = —Hyfipa f : Change Master
1] =
¢ Look at eqs 1a: l Appearance
: Title
- - i l = 4
Nia = 7[{a.'”‘a1 = H,M1a = [ hn = +-£‘XP (-)wu“ul . G)J Body
& Slide Number
* Use gauge freedomjat node a to rotate normals antiparallel to 1:
» Background

Mle = —TNal
Edit Master Slide
All directions determined. Use remaining egs ab to solve for w,

s Write i, = —H_ ' H,l}, , compute explicit composition of 4-screws, take scalar projections:
L3
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4-simplex asymptotics revisited

Blank
) Egs to solve: Hoilay = —Hypfp, ] . Change Master
1] =
* Look at eqs 1a: l Appearance
E Title
- - - i - = ~
filg = —Haflg1 = Hyfie & | ha = Lexp (_)w,,nul -rr) w, €C Body
— 2 Slide Number
* Use gauge freedomjat node a to rotate normals antiparallel to 1:
22 Background

Mle = —TNal
Edit Master Slide
All directions determined. Use remaining egs ab to solve for w,

s Write i, = —H_ ' Hyily, , compute explicit composition of 4-screws, take scalar projections:
cos(wq + £2,) = cos Sy,

sin ¢, sin(w, + £2,) = sin ¢%, sin(w, + £3,)

where:  cosf?. = oL flba + (a1 - o) (B1p - fl1a) _ cOS Sa1 + €08 6y, cOS B \ 4
. l ; & i i i, B . . ;
' "7115 * n]”” I7ia1 % fias] smff’éb sin ¢y, 1
¥
cos éi’ e ﬁ“‘ X ﬁ]” * ﬁ-u] X ﬁ:ub nis \./.‘.
i s Bl . " = — . . |
' 171y X diral |7iar X ias| \ these angles, which featured prominently

5.4 in discrete geometries, appear automatically
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Classifying the solutions

cos(wq + €5;) = cosbly, - atmost two solutions per each w,

i O b\ — cin &P sinfe 3 :
sin ¢, sin(w, + €2,) = Sll: @y 80wy, +£§3) > constrain the w, among themselves

Write w, 1= a, + 18,

* Euclidean sector: Bz =0Va & H, =R, € SO(3) forall nodes

a, = +6°, — rf_h

al al
the + sign is alway a solution for any vector geometry
the - sign is only a solution if angle-matching conditions hold

because all faces are triangles and areas match, this implies shape matching: Regge geometries

finally, the second egs imply that the signs must coincide for all a: only two solutions in the end

) o
e Lorentziansector: @ = —£5; +Ila

.Bu — iéb I{ﬂ ¢ 50(3)

al

solutions exist only if angle-matching conditions hold; no “lorentzian vector geometries’

» Background
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Holonomy-flux vs discrete geometries
Blank

Change Master

Lee: we started with a nice and elegant representation of the gravitational field in terms of holonomies and

Appearance
fluxes; how did we end up in this intricate mess of discrete geometries with piles of dihedral angles? Title
Body
; G . - : lid
It is actually a very relevant question, and | would like to offer my viewpoint here. et
gz There are two issues here that can be distinguished: » Backoroumd
2. first order vs second order formalism Edit Master Slide

:E HF are variables for first-order formulation of gravity, with the connection as an independent variables
when we do this, even in the continuum, we get a much simpler and elegant picture than EEs:
xe ANF =10, d,e=0

polynomial equations. The intricacy of the Riemann tensor is not lost; it is hidden in the new dynamical

2. truncations. In the spin foam approach, but also in most canonical papers, we do calculations on a fixed
graph. This introduces a truncation of the dofs of LQG, reducing them to a finite number. The dynamics of

help from discrete models of GR to understand the quantum dynamics. This leads to dihedral angles...

This is one approach to study the dynamics; it would be great if simpler descriptions were accessible
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The general algorithm

Blank

i . ‘ - . . 3 Change Master
No need of invoking bivector reconstruction theorems, algebraic maps, commuting diagrams...

It all boils down to elementary trigonometry e
the price to pay is that everything is gauge dependent. But interpreting the boundary data in terms of Title
discrete geometries, there is an obvious gauge better than the others: the one where the edges are aligned Eod
Benefit: can be applied to any graph _ e b
type-21 ,&\/'—'/ type-22 » Background

Edit Master Slide

* pick an initial node, determine all group elements at the nodes connected to it

* pick one of the first neighbours, and determine all unknown group elements connected to it
« continue until all group elements have been determined, and all link equations verified
S the algorithm requires a choice of "dominant node set’ of the graph,

' and uses a preferred gauge fixing at every node:

taking the normals antiparallel to those of the seed node of each step
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New features appearing beyond the 4-simplex

* As anticipated by revisiting the 4-simplex analysis, the true conditions for the existence of distinct critical
points are angle-matching; the fact that for the 4-simplex they imply Regge data
is a consequence of the fact that all faces are triangular
LY
* For more general graphs, boundary data with distinct critical points are conformal twisted geometries
(first pointed out by Bahr-Steinhaus from examples in the Euclidean EPRL-KKL model)

* 3d Regge geometries, and flat-embeddable 3d Regge geometries that define 4d Regge geometries, are
subsets with the same number of critical points

* More than two critical points are possible for modular graphs
(first pointed out by Bahr)

* Beautiful interplay between spherical cosine laws and critical point equations, for any n-cycle
In fact, one can learn about generalised SCL, or Lorentzian trigonometry, studying these egs
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General asymptotic formulas
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: s i or)3N—Lg2L+N-1 5 9 A AL Change Master
» For vector data, 1 critical point: ~ Ar = () S o O3V
AUN=D) Vdet —H®
k Appearance
2 Title
For angle-matched data, we can define Body
an edge-independent 4d dihedral angle from spherical cosine laws, Slide Number
; and a action St (Gas 858) = Y _ JabBab(9)
27 (ab) » Background
* For angle-matched twisted geometries, on non-modular graphs, 2 critical points: Edit:Master-SBde

5 "_ . 2 :i{:\’—i]22L+N—£J Qe _._iz\::’r Q=) ,—1ASp —
2 Euclidean Ap = Bx) — "1'( ‘ - - € ) + O(AV+2)
A3N=-1) Vdet—H®  J/det —H )
~\3(N—1)92L+N—1 (+) piA7ST (=) p—iAYS, o
= i Lorentzian Ap = (2m) : 2 J —1)X z\lf( fi g + 2% r) + O(AT3N+2)
AB(N-1) Vdet —H ™) y/det —H-)

* On n-modular graphs, up to 2n critical points. E.g. Euclidean:

(Qn,).'l(.-\-'—1)221.4—.%'—1.} o Qe \glen
Ap e = AASE V]
I A‘”‘" 1) £ ‘: \/dt‘t ”.-,:‘
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Graphs explicitly solved, and new features they exemplify
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no polytope boundary data non-minimal cycles
modular graph
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Summary of results
Blank
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* Among the graphs and data with 4d interpretation, 4-simplex is the dominant one (slowest power law decay

A
* There are more general geometries than Regge’s with distinct critical points Dp:::’m
, T St (Jabr B28) = ) _ asBab () oy
* Apart from the mathematical results, what physical implications? (ab) Slide Number
* The fact that the EPRL model has more general geometries on a general vertex is not a surprise after all i
L ackgroun

the simplicity constraints it implements are a complete discretization of the continuum ones only for a 4-simplex
* Bahr and Beloy for instance are exploring a modification of the model that could implement additional ERE—
constraints
* The question of removing some critical boundary data resonates with other ideas to restrict also the 4-
simplex amplitude (Engle, Zipfel, Han...)

ool * Asante-Dittrich-Haggard are exploring the dependence of the dynamics on the strength with which the

¥

shape matching conditions are imposed

*» Of course, the validity of the semiclassical limit requires more stringent questions (dynamics on internal
faces, cosine contributions, vector geometries, etc...)

* All these are interesting open questions for future work

These techniques now exist, and hopefully they can be useful to the study of the EPRL model and of LQG
more in general
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