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Abstract: Basic statistical properties of quantum many-body systems in thermal equilibrium can be obtained from their partition function. In this
talk, | will present a quasi-polynomial time classical algorithm that estimates the partition function of quantum many-body systems at temperatures
above the thermal phase transition point. It is known that in the worst case, the same problem is NP-hard below this temperature. This shows that the
transition in the phase of a quantum system is also accompanied by a transition in the computational hardness of estimating its statistical properties.
The key to this result is a characterization of the phase transition and the critical behavior of the system in terms of the complex zeros of the
partition function. | will also discuss the relation between these complex zeros and another signature of the thermal phase transition, namely, the
exponential decay of correlations. | will show that in a system of n particles above the phase transition point, where the complex zeros are far from
the real axis, the correlation between two observables whose distance is at least log(n) decays exponentially. Thisis based on joint work with Aram
Harrow and Saeed Mehraban.
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How hard is it to approximate E, in the worst case?

It is QMA-complete [K’02, KKR’05, ...]

Efficient algorithms in special cases [ALVV’16, BH’13, ...]
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|%0)

It is QMA-complete [K’02, KKR’05, ...]

Efficient algorithms in special cases [ALVV’16, BH’13, ...]
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At non-zero temperature T = 1/f, system in state

. e
Gibbs state p = 2ke PEr [ )yl

Partition function  Z(B) = Zke—ﬁEk — Tr[e‘BH]
B = 0,p = [1ho)thol
B—-0,p-1/d"

Free energy
8 oo, F — E, F(B) = —-1ogZ Tr[Hp] ——S(p)
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Finding Z(B) exactly is #P-hard [Val'79]
Goal: design an approximation algorithm that
Input: H, (G, ¢
Output: estimate Z(f) such that

logZ(B) —log Z(B)| < ¢

Hardness depends on temperature
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Maximally mixed state Ground state

Trivial QMA-hard
B =0 ﬁ = o0

Transition in the hardness
but we also know about

Transition in the phase
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Maximally mixed state Ground state

Trivial QMA-hard
B =0 ﬁ = o0

Transition in the hardness
but we also know about

Transition in the phase

Physical properties abruptly change
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Maximally mixed state Ground state
Trivial Be QMA-hard

Mehdi Soleimanifar '4

Net magnetization

Transition in the hardness
but we also know about

Transition in the phase

Physical properties abruptly change
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Maximally mixed state Ground state
Trivial Be QMA-hard

Net magnetization

Transition in the hardness
but we also know about
Transition in the phase

Physical properties abruptly change

Hardness of approximating Z ([3)
VS
Physical phase transition?
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Maximally mixed state Ground state
Trivial Be QMA-hard

| Mehdi Soleimanifar
ﬁ 00
T 0

]
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For classical Ising model
* Above T, there is a polynomial time algorithm

» Below T, no efficient algorithm unless NP = RP [Sly’10]

Computational phase transition
matches
Physical phase transition
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Result 1:

quasi-poly time algorithm

for f < BB,

| Algorithm |

Result 2:

lower bound on £,

Bo < B¢

[Location of

A

complex zeros of Z(f) ]

h

y

Result 3:
zero implies decay

[Decay of correlations]
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Complex zeros vs phase transition

Ground state
QMA-hard

Maximally mixed state
Trivial Be
ﬂ = 00
T=0
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Not differentiable
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Complex zeros vs phase transition

Maximally mixed state Ground state
Trivial Be QMA-hard

g

0 B =00
[ /T:o
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Not differentiable
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Singularities at 3,
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Complex zeros vs phase transition
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Im(pB) 1

’B =0 Ré(g)
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Complex zeros vs phase transition

Mehdi Soleimanifar

Z(B) = Xy e FEk

Sum of strictly positive terms

B=0 Re(B)
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Complex zeros vs phase transition

Mehdi Soleimanifar

Z(B) = Xy e FEk

Sum of strictly positive terms

B=0 Re(B)
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Complex zeros vs phase transition

Z(B) = X e Frr
Sum of strictly positive terms

No singularities for free energy

=0 Réﬁg)
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Complex zeros vs phase transition
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X : zeros of Z(B) = X, e PEk

Im(B) 1
< |B=0 Re(B)
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Complex zeros vs phase transition
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X : zeros of Z(B) = X, e PEk

Im(B) 1
x
x x
x *  zeros approaching
e real axis as n — o
x
x * x
%
x
—t 5 .
— x
B=0 , B Re(B)
x x
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Complex zeros vs phase transition
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x : zeros of Z(B) = X, e PEk

Im(B) 1

x *  zeros approaching

T real axis as n — o

x * * x singular log Z(B)

*
- xxl 5
B=0 , Re(P)
x x

Pirsa: 20050017 Page 22/80



Complex zeros vs phase transition

Location of complex zero of Z() Mehdi Solemanifar |
tells us about
phase transition point

X : zeros of Z(B) = X, e PEk

Im(B) 1
- x zeros approaching
cxne x % real axis as n — o
. x * x non-analytic log Z(B)
%
?‘8 :xO x "‘xlc Ré(B)
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 Studying zeros initiated by Lee and Yang [LY'52]

Phase transition in classical Ising model by
changing the external magnetic field

« Extended to thermal phase transition by Fisher [F'65]
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To Recap
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We made two observations

Maximally mixed state Ground state
1) Trivial QMA-hard
® . HUL 9
' & =0 B = ‘ ‘

2)

Im(p) x : zeros of Z = Tr[e PH]

X x zeros approaching the
xox g " real axis as n — o
:
) =0 1 Re(B)
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[Algorithm]

1 Mehdi Soleimanifar

[Location of complex zeros of Z(f) ]
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Goal: design an algorithm that

Mehdi Soleimanifar |

Input: H,B, &

Output: estimate Z(f) such that

logZ(B) —log Z(B)| < ¢
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Goal: design an algorithm that

Mehdi Soleimanifar \

Input: H,B, e

Output: estimate Z(f) such that

log Z(B) —log Z(B)| <(L/poly(n)

Result 1:

An approximation algorithm for Z () with running time
n0Uog(n/)) that works above the phase transition point
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Goal: design an algorithm that

Mehdi Soleimanifar

Input: H,B, e

Output: estimate Z(f) such that

log Z(B) —log Z(B)| <(L/poly(n)

Result 1:

An approximation algorithm for Z () with running time
n?Uog M|that works above the phase transition point
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Analysis:

Mehdi Soleimanifar

The idea is to
Extrapolate the solution in the easy regime (high T)

to find the solution in the harder regime (lower T)
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Analysis:

Mehdi Soleimanifar |

The idea is to |

Extrapolate

Taylor expanding log Z (f3)
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Analysis:

Mehdi Soleimanifar

The idea is to

Extrapolate

Taylor expanding log Z (f3)

Need to compute the low order derivatives

Need to make sure Taylor expansion converges
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Extrapolating log Z(B)
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Im(B) 1
x x
x
x
A
where we start X X * we want fo know Z(f) here
A x X -
\ x X,
-~ {
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Extrapolating log Z(B)

Mehdi Soleimanifar

* log Z(p) is analytic in zero free region

X X
& x
" x
where we start x X " we want fo know Z(f3) here

I’ x x -
\ x *
e 7%
b zerofree o~ |%

g=0 B |%Bc
x % & ®
x
x x
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Extrapolating log Z(B)

Mehdi Soleimanifar

* log Z(p) is analytic in zero free region

* |logZ(B)l = 0(n)

X X
x
x
" x
where we start x X " we want fo know Z(f3) here

I’ x x -
\ x X,
TN 7%
b zerofree o~ |%

=1 B |*Bc
x % & ®
x
x x
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Extrapolating log Z ()
* log Z(p) is analytic in zero free region

* |logZ(B)l = 0(n)

1 df log Z(0 _
log Z(B) — X0 gfﬁ“ﬂf’ < 0(n)e~2K

where we start we want fo know Z(f3) here

I’y -
\ /

R

N

> zerofree o~ |,
B=0 B Be

/
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Extrapolating log Z(B)

Mehdi Soleimanifar |

* log Z(p) is analytic in zero free region

* |logZ(B)l = 0(n)

1 d¥log z(0 _
logZ(ﬁ)—pr{:oz zfﬁ( )ﬂ’?‘ <|o(n)e %K

1/poly(n)
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Extrapolating log Z(B)

Mehdi Soleimanifar |

* log Z(p) is analytic in zero free region

* |logZ(B)l = 0(n)

1 d?log Z(0 _
log Z(B) ~ Lio etz 2B!| <o) ¥

!

1/poly(n)
K = O(logn) derivatives needed
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How to compute O(logn) derivatives of log Z(f) ?
Sufficient to find O(log n) derivative of Z ()

d*Z(0)
dkp

 Tr[H¥]

H is sum of poly(n) many local terms
H =3P H,

So takes time n? to find Tr[HX]

Mehdi Soleimanifar |
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How to compute O(logn) derivatives of log Z(f) ?
Sufficient to find O(log n) derivative of Z ()

d*Z(0)
dkp

x Tr[H¥]

H is sum of poly(n) many local terms
H = P2 H,

So takes time n?2(°8™ to find all the derivatives

Mehdi Soleimanifar !
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Why not go beyond the phase transition point?

Im(B)1

where we start

we want to know Z here
% el

Mehdi Soleimanifar
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Why not go beyond the phase transition point?
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Im(B)t
b x
® x
* ®
where we start x % * . we want to know Z here
'y & » % v
\ Y,
E Tom 1 N
0| S e P Re(B)
x ® % o %
% x
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Why not go beyond the phase transition point?

Mehdi Soleimanifar

Im(B)t
x x
= running time blows up
. LA
where we start x % * . T\ Wwe wanttoknow Z here
'S *® x x| v
\ /
i Toy w
=0 | e P Re(®)
% ® % o x
% x
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Previous work

* Introduced by Barvinok to compute permanent of
matrices [Bar'16]

* Used in many new algorithms for old counting
problems [LSS’18, PR16, EM’18,...]

* Running times are usually quasi-polynomial
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Previous work

* Introduced by Barvinok to compute permanent of
matrices [Bar'16]

* Used in many new algorithms for old counting
problems [LSS’18, PR16, EM’18,...]

* Running times are usually quasi-polynomial
* More recent results [KKB’19, MH’20] improve our

running time to polynomial time at high enough
temperatures
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[Algorithm]

Result 1: Result 2:
quasi-poly time algorithm lower bound on S,
for ﬁ = ﬁc 30 < Bc

[Location of complex zeros of Z(f) ]
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Result 2:

There is a constant B, such that no zeros in disk || < B,

Im(B) ]

L
%

K/ﬂo 2 Re(®)
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Proof:

We lower bound Z () recursively
using “cluster expansions” [Hastings’05, KGK+'14]

Zn(B)
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Proof:

We lower bound Z () recursively
using “cluster expansions” [Hastings’05, KGK+'14]

Zf (Oﬁ ). @

% #
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Y
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e .0 & & 0O
A

¥
new qudit to be added
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Proof:

First show
1Zes1(B)] = ¢ Zp(B)]

Zp+1(B)
e o 0 0 0 0 0 o b ®
e o 0o 0 0 0 0 o ® L
@ o ° °
o @ ° 2
e ] e L]
o ] ° o o
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o ® e o .\\\. e @ & @

¥ A
new qudit added new qudit to be added
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Proof:

First show

Zo+1 (B = ¢ Z,(B)]
Repeat to get

1Zn(B)] = c7"|Z1(B)

Zps1(B) Z,(P)

® o0 0 0 0 0 0 e 00 00 0 0 ¢
® 00 0 0 0 00 |lOan(B)| S O(n) e o0 00 0 0 0
o o o o o e o o
@ o o o
L v ® ] L
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@ .‘\ ® 0 0o 0 0 o ° o“\ e o 0 0 0 0
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new qudit added new qudit to be added
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Extrapolating log Z(B)

» log Z(p) is analytic in zero free region

* |logZ(B)l = 0(n)

1 d*log Z(0)

logZ(B) — Lé-o7;

4 -a K
i alp f1<0n)e

where we start we want fo know Z(f3) here

F'y g
\ V4
~ — \
b zerofree o~ |,
ﬁ =0 ﬁ ﬁc
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Proof:

How to show?

Zer1 (B = ¢ |Z,(B)]

Cluster expansion: for |B| < B,,
e PH =~ ¥ product of H; 's

Zp.1(B) = Z,(B) + corrections

|corrections/Z,(B)| < 0(1)
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Decay of correlations vs phase transition

B
dist(4,B) "
A

A

| Tr[ABp] — Tr[Ap]Tr[Bp]| < c e~distAB)/2
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Decay of correlations vs phase transition

B
dist(4, B)
_,//

A

| Tr[ABp] — Tr[Ap]Tr[Bp]| < c e~distAB)/¢
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Decay of correlations vs phase transition

Decay of correlations is
a signature of phase transition

» Above T, exponential decay of correlations

» Below T, there is long range order
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Decay of correlations vs phase transition

Algorithmic implications?

» Classical spin systems [Weitz'99,...]

Mixing in time
}

efficient sampling algorithm

—

Mixing in space

!

exponential decay of correlations
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Decay of correlations vs phase transition
Algorithmic implications?

» Classical spin systems [Weitz'99,...]

Mixing in time = Mixing in space
efficient sampling algorithm exponential decay of correlations

* General Hamiltonians [BK'16]

Mixing in time “— Mixing in space
+
Decay of quantum CMI
“Markov property”
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[Algorithm]

Result 1: Result 2:
quasi-poly time algorithm lower bound on S,
for ﬁ = ﬁc 30 < Bc

[Location of complex zeros of Z(f) ]

[Decay of correlations]
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What is the relation between
zeros of Z() and decay of correlations?

For translationally-invariant classical
system proved to be equivalent [DS’85]

How about quantum systems?
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Result 3

We show absence of zeros near real axis implies
exponential decay of correlations

When

» For any quantum system if dist(4, B) = Q(logn)

* H consists of commuting terms H = }}; H;, [Hl-, Hj] =0

 General H on a one-dimensional chain

Pirsa: 20050017 Page 62/80



Proof: Similar to the extrapolation idea in our algorithm
and the one used in [DS’85]

* Define a function that measures correlations btw A, B

fg(A, B)

dist(4,B) ~
il
A
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We show

fp(A, By

fz(A4,B)=0atg =0
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We show

fp(A, By

fs(A,B)y=0atg =0

dﬂl

257 fp(4,B) =0 form < 0(dist(4, B))
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We show

fs (A, BYy

small value

> f

AB)=0atg =0
Iplasts P + fp(4A, B) analytic
dﬂl

- f(A,B) = 0 for m < O(dist(4, B))
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[Algorithm]

Result 1:
quasi-poly time algorithm
for g < BB,

Result 2:

lower bound on £,

30<ﬁc

[Location of complex zeros of Z(f) ]

y

Result 4:
decay implies zero
for classical systems

h

y

Result 3:
zero implies decay

[Decay of correlations]
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Result 4:

Decay of correlations at real temperature [
iImplies no zeros close to real axis at

* Proved for translationally-invariant classical systems
[DS’85]

» We can extend their proof for general classical
systems

Page 68/80
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Rough high level idea

Similar to Result 2

Zes1(B) Zy(B)

® & & & & & & @ ® ® & @ ® & & O
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e @ | N e o * @
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@ i-- e © e ° e O
o o‘\. e o ¢ 0o o ° 0\‘\0 e o 0o o 0
ce oo e o0 e e cec e o0
¥ ¥
new qudit added new qudit to be added
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Rough high level idea
Similar to Result 2

Instead of cluster expansions use decay of correlations

Z¢+1(B) Zy(B)
® & & & & & & @ ® ® ¢ @ ® & o O
® ¢ & & & o ¢ @ ® ®© ® ¢ ¢ ¢ 0 O
® @ e @ e o * @
L] ® =] &
L ® ® L
® i“ e ©° L e @
[ o‘\. e e ¢ 0o o ® 0\‘\0 e o 0 o 0
e e cecc oo RN R
v ¥
new qudit added new qudit to be added
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[Algorithm]

Result 1:
quasi-poly time algorithm
for g < BB,

Result 2:

lower bound on £,

30<Bc

[Location of complex zeros of Z(f) ]

F

Result 4:
decay implies zero
for classical systems

h

Y

Result 3:
zero implies decay

[Decay of correlations]
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Extrapolating in external field

$ 660 0.0 >m
¢ o g b =
I «
dedeoed i <«

YAV
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Extrapolating in external field

-0 0 -0 -0 -0 —
—

. -0 00 oo —
S

o000 00 —

—

00 -0 0 -0 —

00 0 oo

Easy regime
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Result 5:

Ferromagnetic Heisenberg model

H=-%K;ZiZ; — X J;;(X:X; + YiY;) — X 1iZ;
Ki; = |Jijl
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Result 5:

Ferromagnetic Heisenberg model

H = - ¥ KijZiZ; — T Jij (XX + YY) — nXiJiZ;

Ki; = |/l
Im(w) 1
End here Start here
4 4
Hard & d Easylf i
= z Re(u)
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Result 5:

Ferromagnetic Heisenberg model

H = - ¥ KijZiZ; — T Jij (XX + YY) — nXiJiZ;

Ki; = |/l
Im(p)
Lee-Yang zeros on
imaginary p End here Start here
[SF’'71] ) t
Hard i g Easy, -~
fu=0 p Re ()
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Previously, polynomial time algorithm for
ferromagnetic XY model [BG'17]

H = —2;ibijXiX; — X ¢ijViY; — X diZ;
b;ij = |cij

Solved by reducing to counting perfect matchings

Pirsa: 20050017 Page 77/80



Result 5:

Ferromagnetic Heisenberg model

H = - ¥ KijZiZ; — T3 Jij (XX + YY) — nXiJiZ;

Ki; = |Jijl
Im(p)
Lee-Yang zeros on
imaginary p End here Start here
[SF’'71] ) ¢
Hard & g Easylr g
fu=0 p Re (1)
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Open questions

 Fully establish the equivalence between absence
of complex zeros and decay of correlations

» Absence of zeros implies decay of quantum CMI?

« Aregime where quantum computer can’t sample
but extrapolation works?

» Other applications for extrapolation (avoiding sign
problem, adiabatic algorithms,...)

 Other algorithms for Z(f) like convex relaxations?
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