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Abstract: MIP* denotes the class of problems that admit interactive proofs with quantum entangled provers. It has been an outstanding question to
characterize the complexity of this class. Most notably, there was no known computable upper bound on MI1P*.

We show that MIP* isequal to the class RE, the set of recursively enumerable languages. In particular, this shows that MIP* contains uncomputable
problems. Through a series of known connections, this also yields a negative answer to Connesé€E™ Embedding Problem from the theory of
operator algebras. In this talk, | will explain the connection between Connes' Embedding Problem, quantum information theory, and complexity
theory. | will then give an overview of our approach, which involves reducing the Halting Problem to the problem of approximating the entangled
value of nonlocal games.

Joint work with Zhengfeng Ji, Anand Natarajan, Thomas Vidick, and John Wright.
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Operator algebras |

Connes Embedding  Does every separable finite von Neumann factor embed into an
Problem (CEP) ultrapower of the hyperfinite type I, factor?

[Kirchberg 1993]

[Fritz 2010] [Junge, et al. 2010] [Ozawa 2013] Quantum information
theory

Can quantum commuting correlations be approximated

Tsirelson’s Problem i o . :
by finite dimensional tensor product correlations?

Complexity theory

Complexity of

Is there an algorithm to approximate the value of nonlocal games?
Nonlocal games
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by finite dimensional tensor product correlations?

Complexity theory

Complexity of

Is there an algorithm to approximate the value of nonlocal games?
Nonlocal games
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Correlations

Two separated systems receive inputs x, y € [n], and produce outputs a, b € [k] .

A (n, k)-correlation is conditional probability p(a, b |x, y) describing the joint
behaviour of the two systems.

Correlations represented as vectors in [0,1]**k>nxn,

¥
4
A
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Classical correlations

X
B
A
L

(x) g)

H.h

p(a,b |x,y) is deterministic if
1 ifa=f),b=gQ)

a,blx,y) =
pla.blx.y) {0 otherwise

for functions f, g: [n] = [k]

Classical correlations are convex combinations of deterministic correlations. Models correlations
described by classical physics

C.(n, k) := set of classical correlations
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Quantum correlations

n‘}‘k

y
o
B
B
b

p(a, b |x,y) is quantum spatial if p(a,b [x,y) = (Y, Ay @ B, , ) where

A model of correlations in quantum
_ physics: A and B share entangled
* Unitvector ) € H, @ Hp particles in state |y), and perform

* POVMs {Ax,a}a acting on H},, {B%b}b actingon Hp local measurements on [1).

* POVMs are positive operators that sum to identity
(when summed over output set)

* Hilbert space H,, Hz(could be infinite dimensional)

Tensor product assumption models
spatial separation.
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Quantum correlations
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B
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p(a, b |x,y) is quantum spatial if p(a,b [x,y) = (Y, Ay @ B, , ) where

A model of correlations in quantum
_ physics: A and B share entangled
* Unitvector ) € H, @ Hp particles in state |y), and perform

* POVMs {Ax,a}a acting on H},, {B%b}b actingon Hp local measurements on [1).

* POVMs are positive operators that sum to identity
(when summed over output set)

* Hilbert space H,, Hz(could be infinite dimensional)

Tensor product assumption models
spatial separation.

Cy(n, k) := set of finite Cqs(n, k) :=set of Cqa(n, k) := closure
dimensional correlations c guantum spatial S of C,(n, k)
(4, Hp are finite dimensional) correlations (approximately finite dimensional)
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Quantum correlations |l

n‘}‘k
:r‘m‘%

p(a,b |x,y) is quantum commuting if p(a, b |x,y) = (Y, Axq - By ) wWhere

A more general model of correlations in
_ guantum physics, motivated by QFTs.
* Unitvector [§p) € H There is only one Hilbert space, but A and B

* POVMs {Ax,a}a : {By,b}b actingon H measureﬂments commute (outcomes are
causally independent).

* Hilbert space H

where [A, 4. By,,_,] = Oforallx,y,a,b.

Tensor product structure not a priori present
in general QFTs.

Cqc(n, k) := set of quantum commuting correlations
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Which inclusions are strict?

e Bell 1964: Cc =+ Cq Classical # Quantum

e Slofstra 2017: Cqs =+ an Spatial correlations are not closed

* Coladangelo and Stark 2018: Cq * Cqs Finite dimensions # Infinite dimensions

¢ Tsirelson’s prOblem: an = ch? Commuting correlations approximable by

finite dimensional correlations?
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From Tsirelson to Connes

[Fritz 2010]

[Junge-Navascues-Palazuelos-Perez Garcia-Scholz-Werner 2010]

/

C. =( G— Kirchberg’s QWEP  (omm) Comg:eS’_Enlbedding
Rt °  — Conjecture onjecture

[Kirchberg 1993]
[Ozawa 2013]
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Nonlocal games

* G = (u, D) is a two-player nonlocal game with question alphabet Q and answer alphabet A
where

* u probability distribution over @XQ (question distribution) U

* D:QXQxAxA - {0,1} (decision predicate) / \

X Y
* Verifier samples (x,y) ~ u o O
* Player A responds with a, Player B with b A B
N .

a b
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Nonlocal games

G = (u, D) is a two-player nonlocal game with question alphabet Q and answer alphabet A

where

* u probability distribution over @XQ (question distribution)

* D:QXQxAxA - {0,1}

Verifier samples (x,y) ~ u

Player A responds with a, Player B with b
Players winif D(x,y,a,b) = 1

(decision predicate)

Players’ behavior described by correlations.
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Measuring success

* If players use correlation p(a, b|x,y), then success probability is

w(G,p) = Z u(x,y)-D(x,y,a,b) - p(a,blx,y)
x,y,a,b

* Classical value: w.(G) = sup w(G,p)
PEC,

* Tensor product value: w,(G) = sup w(G,p) Same as optimizing over C.., C
q pec, _ P g gs' Lga

 Commuting operator value: w,.(G) = sup w(G,p)
PECyc
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Example: CHSH game

Most famous nonlocal game: CHSH game
» Discovered by Clauser, Horne, Shimony, Holt in 1969.

* Experimental test of whether nature is describable by classical physics
( “hidden variable theory”)

Questions (x, y) are uniformly random bits
Answers a,b € {0,1}
D(x,y,a,b) =1lifandonlyifa@ b =xAy

* Classical value: w.(CHSH) = % Experimentally tested!

* Quantum value: w, (CHSH) = wy (CHSH) = cos? (%) ~ .854 ...
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In 2004, Cleve, Hoyer, Toner and Watrous, computer scientists studying
the interplay between complexity theory and quantum information,
asked the following question:

Is there an algorithm to approximate w;(G)?

nonlocal game G
precision €

* If so, what is the fastest algorithm?
* If you can approximate w,, what other problems can you solve?

* Can approximating w, be reduced to solving some other problem?
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* Steve Cook 1971: computing w.(G) exactly is NP-complete problem.

* Arora-Safra 1991, Arora-Lund-Motwani-Safra-Sudan 1992: forall0 < e < 1
approximating w.(G) + € is still NP-complete!

* Result is known as Probabilistically Checkable Proofs (PCP) Theorem

* More common formulation of PCP Theorem: proofs of a mathematical statement
X can be encoded into a “robust format” such that correctness can be checked by
only examining 3 bits of the proof at random.
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Barriers to an algorithm for w,

* There is trivial algorithm to compute w.(G) in exponential time: enumerate over
all possible deterministic strategies for players.

* Not clear if there is a trivial “brute force” algorithm to compute wg (G).

* Slofstra 2017: there is no algorithm to compute w,(G) exactly! This was
consequence of his work showing Cys # Cyq.

* What about approximating wg?
* No known generic upper bound on dimension of strategy that comes within €

of wy (G).
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Connes’ embedding = Tsirelson’s Algorithm to
problem problem # approximate w,

"Yes” answer to Tsirelson’s Problem implies algorithm to approx w.
Combines two procedures:

* Search from below
» Search from above
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Search from below

* Compute sequence @y < a; S a3 < - < wq(G)

* a4 = €-approximation to best d-dimensional strategy for G

* Computable by searching over e-net on d-dimensional correlations

*ag > wg(G)asd -
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Search from above o) L _______

* Compute sequence f; = ff; = f3 = - = Wy (G) Time

* B4 = best upper bound on w,.(G) certified by sum-of-squares of
degree-d polynomials in noncommutative variables

* Computable by semidefinite programming
* [Navascues, Pironio, Acin 2008] [Doherty, Liang, Toner, Wehner 2008]

* Bu — wqc(G) as d - oo
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Algorithm to approximate w,, assuming Tsirelson

A
Value
Ford =123,...: k
1. Compute ay; < w,(G) using e-net w @) | —
= W, C(G) . i

2. Compute iz = wg(G) using SDP q F
3. If Bg — ag < €, output B,

=z

Time

If Cgqq = Cyc, algorithm converges and approximates w, (G) * €.
* No guarantees on convergence rate!
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MIP* = RE

Main result There exists an computable map M ~ G, from Turing
machines to nonlocal games such that

Wa\® Wq (G ) =
Turing machine
M Gt
A{ % can be replaced

by any constant
less than 1.

%oes | 1
”Oz‘/,a/t wq(Gy) < )
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Implications

* Turing 1936: No algorithm can solve the Halting Problem.

* Thus there is no algorithm to approximate w, * € for any ¢, and in
pﬁréicular the Search Above/Search Below algorithm cannot converge for
a

* Thus there exists a game G such that wg (G) # wy:(G).
* This implies negative answer to Tsirelson’s problem: C,, # Cy.

* Therefore Connes’ embedding conjecture is false.
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Implications (in more detail)

* There exists a game G such that w;(G) < w,(G) = 1. Thus a
commuting operator strategy S for G with success probability 1
cannot be approximated in finite dimensions.

* Shows, in principle, there can be a experimental test for infinite
dimensional physical systems.

* Does not say how to actually carry out this experiment in the real
world, though.
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Turing machine representation of nonlocal games

* A verifier in a nonlocal game G = (u, D) executes the game by
» Sampling from u(x,y)
» Computing decision predicate D(x,y,a, b) € {0,1}

* We assume nonlocal games G are represented by a Turing machine that specifies
the behavior of the verifier.
* i.e., a computer program that can sample from u, as well as compute D(x, y, a, b)

* Complexity(G) = upper bound on the running time of the verifier of G.
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Some notation

* Uniform families oj nonlocal games:
A Turing machine G uniformly generates family of nonlocal games {G1, Gy, ... }
if G(n) outputs verifier Turing machine of G,,.

* Entanglement lower bound:
€(G, p) = min dimension entanglement needed to achieve success probability p.

Example:
+ €(CHSH,2) = 0
4
« E(CHSH,.854...) = 2
« £(CHSH,1) = »
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The Compression theorem

if TM G generates {G,,} such that Complexity(G,,)=poly(n),
Compress (G ) outputs TM F generating {E,} such that for all n,

* Complexity(F,) = polylog(n)

v wgG) =1 =  wyE)=1

Theorem (informal): There exists computable map Compress where

Complexity reduction

Completeness preserving

1
5) > max ( 2n , e (Gn, 5) ) Dimension lower bound
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' _ What is Complexity(G;,,)?
Recursive compression

Fix Turing machine M. Define G = {G,}:

Pseudocode of game G,,:

1. Run M for n time steps. If M halts, accept. Can define G,, properly so that
= < Complexity(Gy) = poly(n).

2. Otherwise, compute F = Compress (G) P V{Gn) = poly(n)
3. Play nonlocal game F, 4. This means that Compression
Theorem is applicable, and {E, }
satisfies conclusions of the
Theorem.
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Recursive compression
Case 1: M haltsintime T.

Fix Turing machine M. Define G = {Gn}: « fn>T, w, G, =1

Pseudocode of game G,,: « fn<T,wy(Gy) = wy(Fpyeq)

1. Run M for n time steps. If M halts, accept.

By Compression Theorem

2. Otherwise, compute F = Compress (G)
* w,(Gr)=1= qu(FT) =1
3. Play nonlocal game F;, ;1.

* D wy(Gr-y) =1

Rinse, repeat

® s (Uq(Gl) =1
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What is wg (Gn)?
Recursive com pre55|on

Case 2: M never halts.
Fix Turing machine M. Define G = {G,}: . Foralln, € (Gn%) = (pnﬂ_%)

Pseudocode of game Gn: By Dimension Lower Bound

1. Run M for n time steps. If M halts, accept. * = EFps1) 2 E€(Gnya)

2. Otherwise, compute F = Compress (G) Rinse, repeat

3. Play nonlocal game Fy, 4. * .2 E(Gy) = E(Fy) forallm

By Dimension Lower Bound

« = E(G,) =2 forallm
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Recursive compression

Fix Turing machine M. Define G = {G,}:

Pseudocode of game G,,:
1. Run M for n time steps. If M halts, accept.
2. Otherwise, compute F = Compress (G)

3. Play nonlocal game F;, ;1.

Let Gy = G;. M
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How to prove Compression theorem?

* Ingredient #1: Rigidity phenomenon of nonlocal games

* (Near-) optimal strategies for CHSH are (nearly) unique: under local basis
changes, players’ measurements are anticommuting operators on C?

* CHSH game certifies 2-dimensional strategies
» Workhorse: Quantum Low-Degree Test is nonlocal game that certifies n-
dimensional strategies, but the verifier complexity is only polylog(n).
* Ingredient #2: Classical PCP Theorem

» States that proofs can be verified by examining only O(1) random locations in
the proof.
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Open questions Thank you!

* Simpler, shorter proof?

* Construct an explicit I, factor that doesn’t satisfy Connes’ embedding
property.

 Construct a non-hyperlinear group.

* What is complexity of MIP<°? Conjecture: MIP“ = coRE.
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