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Abstract: It is well-known that quantum groups are relevant to describe the quantum regime of 3d gravity. They encode a deformation of the gauge
symmetries (Lorentz symmetries) parametrized by the value of the cosmological constant. They appear as some kind of regularization either through
the quantization of the Chern-Simons formulation (Fock-Rosly formulation/combinatorial quantization, path integral quantization) or the state sum
approach (Turaev-Viro model). Such deformation might be perplexing from a classical picture since the action is defined in terms of
plain/undeformed gauge symmetry. | would like to present here a novel way to derive/justify such quantum group deformation, starting from the
classical action.
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3d gravity and Y
quantum groups

Florian Girelli

g;— ] UNIVERSITY OF

WATERLOO

in collaboration with M. Dupuis, L. Freidel, A. Osumanu and J. Rennert

also based on some old works with V. Bonzom, M. Dupuis and E. Livine
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3d gravity action Gauge transformations do not depend on cosmo constant.

T s A : -
Sit le,A] = / ef A (h_-’i] f g hK el A h) ., i
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. te., Florian Girelli |

o
Chern-Simons

Noui-Perez-Pranzetti . . . .
Salhmann Fock-Rosly + combinatorial quantization

Witten's path\integral

: Turaev-Viro model "
¥ Regularization

LQG picture

q :
Quantum group as deformed gauge symmetry
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3d gravity action
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“The journey is more important iy -
than the destination” W | ale
Quantum group as deformed gali
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The expedition

Preparing for the trip:

¢ Symmetry from boundary

¢ Divide to truncate

AN e
The Journey...
We madeit, ("¢
¥
& S =)
M then what? 4d?
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3d gravity with a cosmological constant

The action: Space-time M ~R x & Metric 7, = diag(+,+,0) o = - Florian Girell

Spr[d,e] = a /

A - .
(?iue"' N FT[A] + O ELIK el Ael A t‘“) Notation: we’ll often use
J M

(Ax B =el AT ABX
between 1-forms

dAT+ Z(Ax A+ Z(exe) =0
2 2
de! + (Axe)l =0
Symmetries
o T ) T - I - T does not
Gauge transf 0a€ = (('-' X Oc) ; O(_,,_A = do 3 depend on the cosmo const
“Translations”  dge’ = dao’, §sAT = A (e x @)
N
Charge algebra /.= 3{ aze’, Py = }( ¢ A
Jan Jax
{"Tu: Jﬁ} = J(c\x.’i‘_\- {Pn‘: R} — _U"\J(cbxw’}- {jn- Pv} - P{U'W-“)) T f (-"‘j{d”"f'
a5

Usual central extension
cancelled if parameters are constant on boundary — which we take
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3d gravity with a cosmological constant

The action: Space-time M ~ R x X Metric 7;; = diag(+, +,0) o =

,%HAd:a/

A - - y
(m,ﬂ_;" AFI[A] + O EIIK el nel A szf‘) Notation: we’ll often use
J M

(Ax B =el AT ABX
between 1-forms

dAT + Z(Ax A + —(exe)! =0
2 2
de! + (Axe)l =0
Symmetries
< T " I ; I does not
Gauge transf 0a€ = ((—_’, X a) ) 0o A" = daa’, depend on the cosmo const
“Translations”  dge’ = dao’, §sAT = A (e x @)
Charge algebra /.= 3{ aze’, Py~ }( oy
Jan Jax
{'Inr J_-’.‘J’} 5= ‘I((IX_C?:I'. {-Pr!‘r: Pu} = _O—"\'}(@xp’}: {'}T(l' IDD} = ‘p\'WXfﬁ)

s0(2,2), s0(3,1), so(4).

/1 = J'l"J_r e =e ! PI Frame field is with value in the “boosts”.
Difficult to discretize...
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3d gravity with a cosmological constant a )

" new variables — boundary term changes the shape of the symmetries ' -
J.‘ m
Florian Grelll’ 1
We add to the action a boundary term, parametrized by a vector n
‘ I 1 [ A A 1 ; 1
/ e A FrlA] + UE Erig e’ Ae + 3 (e x e)ym’. We demand that it is constant under variations
o M S AM &
o =1
New pre-symplectic potential 0
' sal _L1e [, 1 e 4 - A
Opa= [ et NdA — =6 [ (exe)n’ = erNdw' —= [ (exe) o
LN 2 JE J X 2 J 3
New connection, depending also on frame field! w = AT+ (n x e)".

Can also be seen as a canonical transformation.

(Remember Holst term vs Ashtekar-Barbero canonical map. Cf general discussion in Laurent’s recent talk)
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3d gravity with a cosmological constant
new variables — boundary term changes the shape of the symmetries

Florian Girelli

We add to the action a boundary term, parametrized by a vector n on=10

¢ : A - 1 .
el A Fy [A] + 0= €15k el kg™ ) s (e x ff);]}.f.
JM 6 2 fomr
I

Let us rewrite the action with the new connection. |w’ = A’ + (n x e).

1
F[A] = Flw+e xn] = Flw|+d,(e x n) + 5(@ X n) X (e X n) doa=datwxa.
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3d gravity with a cosmological constant
" new variables — boundary term changes the shape of the symmetries

Florian Girelli

We add to the action a boundary term, parametrized by a vector n on =0

L : A - 1 .
/ el A Fy [A] + 0= €15k el he® ) o / (e x fi);'”.f.
JM 6 2 Jom

Let us rewrite the action with the new connection. |w’ = A’ + (n x e)’.
|
F[A] = Flw+e xn] = Flw] + d,(e x n) + 5(@ X n) x (e X n) dya =da+w x a.
1 on? _ o _
But i ((exn)x(exn))= Te (e xe) so taking n® = —A

will cancel the volume term
N

A ;- 1 . 1
! Frl/ —€ T A e - > x e)n! = CFIl — Z(ex e d
[J 1 i ( 1A + 6 IR At ) T3 /(_m_f(f xe)m' = AI (e Flw] 2(1‘_, X €) dwn) ;
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3d gravity with a cosmological constant
" new variables — boundary term changes the shape of the symmetries

| -
Florian Girelli

We take as a starting point this action. n?=—A on =0
. 1 wl = AT+ (n x e)!
e Flw]—=(exe)-d,n]). W' = - L X €)°.
J M 2 T
Lorentzian Euclidian
A>0 nis time-like n is pure imaginary
A<O n is space-like n is space-like
L
N = n is light-like n is Grassmanian
or n=0 or n=0
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3d gravity with a cosmological constant
" new variables — boundary term changes the shape of the symmetries

y

Florian Girelli M

We take as a starting point this action. n? = —A on =0

| /U (e Flo] - 5(ex e) -dw'n,).h

EOM: Frlw] — (e xd,n)r =0

d.e! + %KE’ X €) X n]l =0 Torsion equation does depend on the cosmo. const!
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3d gravity with a cosmological constant
" new variables — boundary term changes the shape of the symmetries

o
Florian Girelli

We take as a starting point this action. n? = —A on =0

/u (e - Flw] - %(e X €) 'd.,.,,'n,) '

Action symmetries:

Gauge transformations “Translations”
LI ’
sinl = 0 o = 0
gl = (exa), 5:;3’*’! = (¢ xdyn)
- . 1 I ; I — Al
Sw! = dya’ + (e x (px a)) = Dol det = dyo' + ((e x ¢) x n)/:£)r,*> :
Gauge transformations Deformed/new notion Deformed/new notion
now depend on cosmo. const! of covariant derivative of covariant derivative
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3d gravity with a cosmological constant
" new variables — boundary term changes the shape of the symmetries

Florian Girelli L /|

We take as a starting point this action. n® = —A on =0

/u (e gl = %(6 X €) 'dwn) :

Action symmetries:

Gauge transformations “Translations”
fnl = 0, sinl = 0,
gl = (exa), ();w; = (¢ xdyn)
Swl = dya’ 4+ (e x (nxa))! = Dal. ope! = dyo' + ((ex ¢) xn)' = D¢,

Charge algebra: &, = f arel = J,, Py = }{ ¢'wr = Py + Jsxn.
0% ax

{JE'}:: J,"':i} = J(xx;’:’: {pfnh P’..‘"f} = Pf(mx,:"f)x-n. -+ % (”’- X d) g (1”"— Demanding (1” f— U
v 0L leads to a closed algebra
{J(r- PF-:,-"J} — Pf(.‘rxc‘) = J{f'n:xr'f.)xq'h + f (;’} E d“-
I Jx \

Usual central extension
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3d gravity with a cosmological constant . g ! —
' new variables — boundary term changes the shape of the symmetries T~ r o 2

T 2-2 = I}’—A (57? = I iy = 0 Florian Girelli M

The vector n parameterizes the boundary term: direction and norm.

We can take n defining the third direction
n! = (0,0,n3)
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3d gravity with a cosmological constant
" new variables — boundary term changes the shape of the symmetries

HZ = —A on =0 dn =0 Florian Girelli M

The vector n parameterizes the boundary term: direction and norm.

We can take n defining the third direction
n! = (0,0,n?%)

Lorentzian Euclidian
og=-1 o=+1
A>0 n is time-like n is pure imaginary so might need to choose
A<O - I — the metric so that it is consistent.
A= n is light-like n is Grassmanian
or n=0 orn=0 &
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3d gravity with a cosmological constant
new variables — boundary term changes the shape of the symmetries

[

Florian Girelli | h dl

n® = —-A on =0 dn =20

The vector n parameterizes the boundary term: direction and norm.

We can take n in the third direction
n’ =(0.0,0)

might need to change
the shape of metric

"‘:;ei‘tz_i‘i" ';“c:"dfl‘ no metric change
A>0 n is time-like n is pure imaginary
A<D n is space-like n is space-like S — N1y = diag(+, —so, —s)
A=0 ik ssIT s is sign of cosmo const

i e=igi | s0?
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3d gravity with a cosmological constant
" new variables — boundary term changes the shape of the symmetries

Florian Girelli h

We take as a starting point this action. n’=—-A on =20 dn =20

/u (e - Flw] - %(e X €) 'd.,.,,'n,) '

Action symmetries:

Gauge transformations “Translations”
énl = 0, sinl = 0,
gl = (exa), ();w; = (¢ xdyn)
Swl = dya’ + (e x (nxa))! = Dal. ohe! = dud’ + ((e x ¢) x n)! = D¢".

Charge algebra: I, = f arel = J,, Py = }{ ¢'wr = Py + Jsxn.
)% ax
{JE'}:: U{"ﬁ} = J(xx;’:’: {p}n:s P’,‘!} = Pf(.-nx,:'-f)x-u.
{Ju- PF-:,-"J} o Pf(.‘rxc‘) e J(E'I:Xfr.)X(,"J + f - dfﬁ
0%

Usual central extension
cancelled if parameters are constant on boundary — which we take.
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3d gravity with a cosmological constant
new variables — boundary term changes the shape of the symmetries

!
Florian Girelli ‘,~

We take as a starting point this action. n® = —A on =20 dn =0

/u (e gl = %(6 X €) 'dwn) :

Action symmetries:

Gauge transformations “Translations”
fnl = 0, sin! = 0,
gl = (exa), ();w; = (¢ xdyn)
Swl = dya’ 4+ (e x (nxa))! = Dal. ope! = dyo' + ((ex ¢) xn)' = Dg'.

Charge algebra: &L = f arel = J,, Py = }{ ¢'wr = Py + Jsxn.
0% ax

Ja, Jg} = Jaxg, -p}(}-wP’.‘ — axB)Xn
s Tp} o {Pla, P's} (@x5) What is this algebra?

{Ju- PF-:,-"J} o Pf(.‘rxc‘) = J(E'I:Xfr.)X(,"J

Usual' central extension
cancelled if parameters are constant on boundary — which we take.
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3d gravity with a cosmological constant ‘e '
new variables — boundary term changes the shape of the symmetries

L S - if :
n- = _J\ (SH- = {) (..1“- =0 Florian Girelli h

n! = (0,0,6)

Relevant charge Lie algebra

J —_ c]-j P, — T TI EP[—FT?-JE[,_}((JK :P}-f—('n X .})[

[.]1’ _]J] =g i JE [71,74] = Ci ;¥ with Cp % = J(-n;rﬁj;‘r — 'T?,_](S‘?,).

anz Lie algebra

Cross-term: [J',7;] = C ' J* 4+ € g -
DNE for sol4) will not consider

/ it in the following

This amounts to the Iwasawa gecomposition of the relevant Lorentz Lie algebra.

dpparr= [JI_-.TJ]un = EIJKTKe Jrdr; = {T,/-.Jﬂsu = CH(.J‘JK-
Killing form  {7,.J') =&} = (J',7;), LI Tl = B i,
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Summary up to now

Starting from the usual action, we performed a change of variables, parametrized by a vector.

Florian Girelli

BI Pr— GITI frame field with value in an ”_2 = —A

on =120 dn =0
A;JI —r L:J[JI = (AJ + (n X 8)1).]]

n! = (0,0,0)

/ el A (F,r[,'l] +o=e e’ A {"“) _ / (f: - l"[u,‘] — —(E”. xe)- (1er) :
M 6 J M 2

EOM: Jolsde 1 (A, A] + _\[p(] i New curvature dw + i[w,w} +e>w =0
: T DT 2

. - |
de+ Ae=0 New torsion de + —[e,e] + w>e = 0

New covariant derivatives —> all symmetry transformations depend on the cosmo const.

a € su Da = da+[w,a]+el>a in direction su d(a-¢) = Da- ¢+ a- Do,
¢ € an D¢ = do+[e, ‘;.5] twb o in direction an
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Summary up to now

N
Starting from the usual action, we performed a change of variables, parametrized by a vector. Florian Girell E‘
Ip i P :
e Pr— ey e =k on = ( dn =10
At =l = (A + (nx o))y n! = (0,0,0) )

Removing either assumption will allow
to go beyond the quantum group picture.

EOM: dA + 1[1 Al + _\[9(] il New curvature dw + _l[w.,w} +e>w =0
de+ A e=0 New torsion de + —[e, €] + w>e = 0

New covariant derivatives —> all symmetry transformations depend on the cosmo const

a € su Da = da+[w,a]l+eba in direction su d(a-¢) = Da- ¢+ a- Do,
¢ € an Do = dop+e,0] +wp ¢ in direction an
dow = Da, bt = e <

€
6®Ou = w < @, (5(__;')6 = D@

Pirsa: 20040086
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p Divide to truncate

Florian Girelli

We intend to determine the symplectic form in order to find the discrete variables.

= / (de L 0A) = / (0e A dw) = / (de A dw) .
SOk, 2

Divide Let us decompose the (space) manifold in cells — triangles.

<7 »
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W g Divide to truncate

: | \
We intend to determine the symplectic form in order to find the discrete variables. —e h

= / (de AL 0A) = f de A dw) = / (de A dw) .
= > b ( ) Z c;
Divide Let us decompose the (space) manifold in cells — triangles.
2
1
Truncate In the cells, we solve the constraints ~ dw + 5lw.w] +e>w =0

de + i[ﬁ. e] +w>e =0

Any source of these equations is pushed to the vertices of the cellular decomposition.
Proper treatment is deferred to later or see work with B. Shoshany for the flat case.

Need to find the constraint solutions and plug them back into symplectic form.
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DREA) Divide to truncate

AR

~ W
For simplicity, we will restrict ourselves to the Euclidian case with A < 0 S Gir ell M .

Iwasawa decomposition of Lie group is simpler in this case SL(2,C) ~ SU(2) =1 AN

dw + ]Elud w] +e>w =0 W = h;ldhc = 8 (h-;]' (E—]dé.:g) hc)‘
1 Solution: - su
de+ e, +wre =0 e.. = (ha'(¢;'dee)h,) [
l A—0
w|c?.* — hc_ldh(.:a €lor — h;]dX hc:

with £ = (X,1) € R?.

Recover usual formula in the flat case

{.(x) € AN and h.(x) € SU.
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# Divide to truncate

\
For simplicity, we will restrict ourselves to the Euclidian case with A > ( " Gireli M ‘

Iwasawa decomposition of Lie group is simpler in this case SL(2,C) ~ SU(2) =1 AN

dw + ]E[u.)w] +e>w =0 W = hgldh-c 0y (h-;]'(Eﬁ]dé:c)hc)

Solution: ’
de + %[rﬂ,(_’] +wre =0 e . = (h;l(fgl(ﬁ'n)hc)

Jsu

|r |fln ]

Lemma: The truncated symplectic form is

Q. :J*(ée A dw) = Q,

with €2 = dB(es Qs Ol ™)

-/{_‘_'
£.(z) € AN and h.(z) € SU. B /a

§(0z1de,, 6hoh Y

#

c*
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\ A Divide to truncate

For simplicity, we will restrict ourselves to the Euclidian case with A > ()

Iwasawa decomposition of Lie group is simpler in this case SL(2,C) ~ SU(2) =1 AN

1,
dw + E[u.)w] +e>w =0

1
de + §[rf,(_’] +wre =0

{.(x) € AN and h.(z) € SU.

w., = h'dh, + (h-;"(E*](lé':c)/'zc)
.= (RJN(S1Al)R,)

Jsu

Solution:

(i| A
= |fln

Lemma: The truncated symplectic form is

Q. :/ (6e A Sw) ~ Q.

with €2 = —/ dbi(es "l 0hhz™)

S C

= (01dl,, Shoh 1Y)

Florian Girell M
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M anen The Journey R (&. :

Two adjacent cells share an edge. '\
We can determine the contribution for the given edge. Florian Girell =71

Qp = QP 4 QY = i) _ qlt]

Continuity equation <-> triangles in different frames

Gcr(.’l_') — gc,ch([Lf) = [_U.Uf]'
g(_»'c == Lc’cgc’c
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P The Journey S e

Two adjacent cells share an edge.
We can determine the contribution for the given edge.

Qoo = QP QI Y — gl gl

Continuity equation <-> triangles in different frames

Gcr(.’l_') — gc,ch([Lf) = [_U.Uf]'
g(_»'c == Lc’cgc’c

In particular we have then

gc(r’ — (;ct!Gw:’ — Gc:u'(ju’c’-

Pirsa: 20040086

(-3
Florian Girelli L“ 3
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__________ The Journey R T ¢

Two adjacent cells share an edge.
We can determine the contribution for the given edge.

Qp = QP 4 QY = o) _ ql]

(&4 [

Continuity equation <-> triangles in different frames
Go(x) = GocGe(z)  z€w]
gc"c — Lc’ch’c

In particular we have then

gc(r’ — (;ct!Gw:’ — Gc:u’(;u’c’-

= Er:u h‘r:-i'h'm:" gm:’ = gm:’hm;’ h".';’c" f‘a;’r:" - h‘m; hﬂ;c’fi!(‘.’gr_‘.’u’ - f-z'(:gr:u’hm:’h?)’r:f-

in SU S LaHL =0, in AN or R3

{-!(?f '

with  L°  =(, 0., B = heyhye

vv

which are called the triangular holonomies
aka triangular operators in Kitaev’s model.

Pirsa: 20040086

Y
.

Florian Girelli s =1 \ y
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p TR The Journey L TR—
Two adjacent cells share an edge. — \
We can determine the contribution for the given edge. Florian Girell d\ g
ol
0., = Q[t.'i.-"] B Q["-“"U} _ Q['ﬁm’] o Q[T-"U(]
Qbce! — 2bn o s Yo
. ] | Continuity equation <-> triangles in different frames
Lo

Gcr(.’l_') — gc,ch([Lf) = [_U.Uf]'
g(_»'c == Lc’cgc’c

In particular we have then

gc(r’ — (;ct!Gw:’ — Gc:u’(;u’c’-

= Er:u h‘r:-i'h'm:" gm:’ = gm:’hm;’ h".';’c" f‘a;’r:" - h‘m; hﬂ;c’fi!(‘.’gr_‘.’u’ - f-z'(:gr:u’hm:’h?)’r:f-

in SU S LaHL =0, in AN or R3

{-!(?f '

with  L°  =(, 0., B = heyhye

vv

which are called the triangular holonomies
aka triangular operators in Kitaev’s model.
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. PR The Journey . TR— g g‘
Two adjacent cells share an edge. .
We can determine the contribution for the given edge. Florian Girell A’“

Qp = QP 4 QY = o] _ qlt]

(&4 [

Continuity equation <-> triangles in different frames
Go(x) = GocGe(z)  z€w]
gc"c = Lc’ch’c

In particular we have then

gc(r’ — (;ct!Gw:’ — Gc:u’(;u’c’-
= Er:uh‘r:-i'h'm:"g'.-;c’ - gm:’hrm’ h‘-z;’c" f‘a;’r:" - }2'(:‘{)}2’1,-‘(2’51-‘(‘.r€r_‘."t-‘" - f-z'(:gr:u’hm:’h?)’r:f-

& LyHY=H

ce’

ribbon structure

with  L°  =/{,.0., H?, = heohye.

vv

which are called the triangular holonomies
aka triangular operators in Kitaev’s model.
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a ¥
: : -
* L1 ]

TR The Journey B P gy |

Two adjacent cells share an edge. & . \
We can determine the contribution for the given edge. Florian Girell b‘.

Qp = QP 4 QY = o) _ ql]

Continuity equation <-> triangles in different frames

GCI((L) — gc,ch(m) = ['U'U’],
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__________ The Journey R T ¢

Two adjacent cells share an edge.
We can determine the contribution for the given edge. Florian Girell 7

Qp = QP 4 QY = o] _ qlt]

(&4 [

Continuity equation <-> triangles in different frames

GCI((L) — gc,ch(m) = ['U'U’],

N

- I U -_" = g ] ]
ribbon structure L  H., = H',L{ ,. with LS = bplle, H?, = heyhye

CC

We can evaluate the symplectic form:

Theorem 1 The symplectic form associated to a link [cc'] is given by

i’ '] ]. iy i ayf 4 S
S“zc"r.” = QL“] —4 [i: == ((AH:P’ A ALEW’) a5 <éH;r‘ A ér‘;ﬁ">)

=3
Au = duu! Au = u"tou

=

This is a symplectic form— hence we have a phase space. It is called a Heisenberg
double: it is the generalization of the usual cotangent space.
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We made it! i g ,

We have derived the ribbon model introduced by A
Bonzom, Dupuis, FG, Livine (also by Freidel-Zapata). - . M‘

e % (<m}. A M) + <éh /\M))
Alekseev-Malkin l with ¢ h = ?2, E !

N {{1 Fg} = —[.", fl gg}? {F’l.l, hg} = —["I"f', hl }LQ] + crossed terms...
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We made it! Y V

|

We have derived the ribbon model introduced by
Bonzom, Dupuis, FG, Livine.

e % (<m}. A M) + <éh /\M))
Alekseev-Malkin l with ¢ h = ?2, E !

{
Florian Girelli I

N {{1 Fg} = —[.", fl gg}? {F’l.l, hg} = —["I"f', hl }LQ] + crossed terms...
if cosmo const is zero, ‘ _ ~ _
we recover T*SU(2) {—>XeR® h=h X=hXh"!
as I1SO(3)
{Xﬁ‘, X]} = CfJX;‘ {}7.-, h} = [
if cosmo const is not zero (<0), h = ( i: _; ) € SU(2), deth=1
SL(2,C) is the phase space
_ " K - K g
{(‘t‘, f}'} = 1RYY, {af:'nf} :k_iiaﬁ)"u {O‘ﬂ hi’} = _"i’EaﬁI: {’7* r}} =0

k= GIA|
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We made it!

We have derived the ribbon model introduced by [N
Bonzom, Dupuis, FG, Livine. B . s ‘. '/f

We replace the dual graph by a ribbon graph,
which carries the info about all the variables.

Gauss law can be seen as an holonomy
constraint in the AN (or R3) sector.

flfgﬁ/g =1

One can check that it still generates the infinitesimal rotations.
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We have derived the ribbon model introduced by , \
Bonzom, Dupuis, FG, Livine. L G ol ‘K

We replace the dual graph by a ribbon graph,
which carries the info about all the variables.

Gauss law can be seen as an holonomy
constraint in the AN (or R3) sector.

bilols3=1— X1 +Xo+X3=0
LY
One can check that it still generates the infinitesimal rotations.
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We made it!

We have derived the ribbon model introduced by
Bonzom, Dupuis, FG, Livine.

A/
Florian Girelli ]M[

Flatness constraint is now depending on
the different holonomies
[h transports the flux, but the flux also transports the h].

It still generates the infinitesimal translations
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Flatness constraint is now depending on
the different holonomies
[h transports the flux, but the flux also transports the h].

It still generates the infinitesimal translations
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We made it!

We have derived the ribbon model introduced by
Bonzom, Dupuis, FG, Livine.

Florian Girelli \ _‘_/1!“

Quantization of the model gives rise to
quantum group spin networks and the TV amplitude
as discussed by Bonzom, Dupuis, FG.
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We made it!

We have derived the ribbon model introduced by
Bonzom, Dupuis, FG, Livine. Florian Gireli |y 41

Quantization of the model gives rise to
quantum group spin networks and the TV amplitude
as discussed by Bonzom, Dupuis, FG.
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\an coproduct of U,(SU(2))

Solution is quantum group intertwiner k= G+/|A
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Summary

Technical comments:

We recovered the quantum group symmetries using 2 steps: Fiéfan Gg
* modifying the gauge symmetries by adding a boundary term/performing a canonical
transformation
¢ dividing and truncating the degrees of freedom by going on-shell.

The Euclidian case with positive cosmological constant has to be treated separately due to
the reality conditions.
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Summary

Technical comments:

‘ / \
We recovered the quantum group symmetries using 2 steps: B .. ol l\\’J/ _
* modifying the gauge symmetries by adding a boundary term/performing a canonical

transformation
¢ dividing and truncating the degrees of freedom by going on-shell.

The Euclidian case with positive cosmological constant has to be treated separately due to
the reality conditions.

There is some room to go beyond the quantum group case, by removing some conditions
on the vector n.

Different vectors n can be related by unitary transformations, can we find some relations
between different quantum deformations parametrized by different n?
k

Can we define spin networks with different n? (domain walls? cf Livine)
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Summary

More general comments:

The truncation encodes the principle of decomposing the space into blocks solving the Florian Girell
constraints. In the present case we have some deformed flatness which encodes
homogeneously curved geometries (cf geometric structures in Carlip’s book).

Construction illustrates again the power of putting terms that do not change EOM
(boundary/topological term) but still renders the theory either more manageable or with
different symmetry structure (cf teleparallel vs GR)

The vector n is analogue to the Immirzi parameter or the theta term in YM, except that we
restricted it here to a specific value, the cosmological constant.
Could there be another quantization without such deformation?
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Summary

More general comments:

Florian Girelli

The truncation encodes the principle of decomposing the space into blocks solving the
constraints. In the present case we have some deformed flatness which encodes
homogeneously curved geometries (cf geometric structures in Carlip’s book).

Construction illustrates again the power of putting terms that do not change EOM
(boundary/topological term) but still renders the theory more manageable.

The vector n is analogue to the Immirzi parameter or the theta term in YM, except that we
restricted it here to a specific value, the cosmological constant.
Could there be another quantization without such deformation?

We recovered the analogue of the Kitaev model for Lie groups. We should use this model
to explore some gravity questions!! “Analogue quantum gravity”?

Ak
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Summary

More general comments:

The truncation encodes the principle of decomposing the space into blocks solving the
constraints. In the present case we have some deformed flatness which encodes
homogeneously curved geometries (cf geometric structures in Carlip’s book).

Construction illustrates again the power of putting terms that do not change EOM
(boundary/topological term) but still renders the theory more manageable.

The vector n is analogue to the Immirzi parameter or the theta term in YM, except that we
restricted it here to a specific value, the cosmological constant.
Could there be another quantization without such deformation?

We recovered the analogue of the Kitaev model for Lie groups. We should use this model
to explore some gravity questions!! “Analogue quantum gravity”?

Is 3d useful to 4d to determine whether we should use a quantum group? (Yes probably)
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Preliminary comments on 4d

3.

with A. Osumanu

" : A 1 :
/ xleNe)gn A (R[w]‘r\ - — e n (!L) + - / (e ANe)ipn A e nt
I 6 oM

Add a boundary term, to implement canonical map

—

. o .
0= / *(eMe)kr f\()wh"‘——gd/

*((ff\(:l,r\';df\(.r(?.'r'i / *
JE

JE

: i s
QI\L = LU'KL 0 E(-“\”L o= L«.,’]f — QIJ +IJJ:

1 1 - .
T = nlfel] = (.7”;((.‘“. C”;\- nIO"r;\
2 2

L=

Ae)gr A SQRE

same change of coordfnatss as in 3d case

7
n" f)rj\'.

-
Ny

Florian Girelli lM(
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Preliminary comments on 4d
with A. Osumanu

\
" : K 1 ;
P S kL _ D koL 4 o e o
‘/M w(eNe) i A (R[u,] 6 e Ae ) + 3 .L_»T *eNe)k, het n F8Bon Gireli I\M‘

Add a boundary term, to implement canonical map

. o .
0= / *(eMe)kr f\()wh"‘——gd/

*(e Ae)gr Ne Kpk = / *(e Ne)xr M sQNL
JE JE

: i s o . .
QL = i . elfntl o W1 =l 71, same change of coordinates as in 3d case

1 1 - . )
g = 3 nllel] = : (_7”;((;“. C”;\- nIO"r;\ n'jr)rh-.

Rlwlkr = RQkr +daZkr +Zx™ ALur if n?— _4;\
: =p We can cancel
NCL)

the volume term

] 5 .
= R[Q]_{(‘L + (lggI}(L + ~_1 (H, CIV\ITRCL }r,_Lt/}\7 H.)l.f(
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Preliminary comments on 4d |

with A. Osumanu “

L

" : A 1 ;
RS gkL _ R koL 1 o e o
‘/M xleNe)gn A (R[u,] 6 e Ae ) + 3 /{.‘,M*(tf\f')hf‘f\( n N Gl ‘\. l

Add a boundary term, to implement canonical map

. o .
0= / *(eMe)kr f\()wh"‘——gd/

*(e Ae)gr Ne Kpk = / *(e Ne)xr M sQNL
JE

J=
: i s o . .
QFL = K 4 . Mt o W = 7' same change of coordinates as in 3d case
Euclidian Lorentzian
Flat: A = 0|n = 0 or n is Grassmanian n = 0 or n is light-like
o g AdS:A <0 n is space-like n is space-like or wmaginary time-like
L el
3 dS:A >0 n is imaginary n is time-like or imaginary space-like

“Guidance” on which deformation we could get!
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Preliminary comments on 4d
with A. Osumanu

# J
R KL _ B koL
‘/M x(e Ae)kr A (R[u,] G ne ) Florian Girelli &M’

Add a boundary term, to implement canonical map

Q= / *(e el A Sl 4 ERJ / *(e Ae)gr Ne Kpl — / *(e Ae) g N SQFE
JE JE JE

: i s o . .
QL = i . elfntl o W1 =l 71, same change of coordinates as in 3d case
Euclidian Lorentzian
Flat: A = 0|n = 0 or n is Grassmanian n = 0 or n is light-like
o g AdS:A <0 n is space-like n is space-like or wmaginary time-like
3 dS:A >0 n is imaginary n is time-like or imaginary space-like

Performing the Hamiltonian analysis, do we get a deformed Gauss constraint?
Should we have the discretized flux as a non-abelian AN holonomy?

Do we get de Sitter spin networks as a generalization of Freidel—Livine—Pranzetti?
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