Title: Gravitational edge modes: From Kac-Moody charges to PoincarA© networks
Speakers: Daniele Pranzetti

Series. Quantum Gravity

Date: April 02, 2020 - 2:30 PM

URL.: http://pirsa.org/20040083

Abstract: In this talk | revisit the canonical framework for general relativity in its connection-frame field formulation, exploiting its& nbsp;local
holographic nature. | will show how we can understand & nbsp;the & nbsp; Gauss law, the Bianchi identity and the space diffeomorphism constraints
as conservation laws for local surface charges. These charges being respectively the electric flux, the dua magnetic flux & nbsp;and momentum
charges. Quantization of the surface charge algebra can be done in terms of Kac-Moody edge modes. This& nbsp;leads to an enhanced theory
upgrading spin networks to tube networks carrying Virasoro representations. Taking a finite dimensional truncation of this quantization& nbsp;yields
states of quantum geometry,& nbsp;& nbsp;dubbed “PoincarA© charge networksd€™, which carry a representation of the 3D diffeomorphism
boundary charges on top of the SU(2) fluxes and gauge transformations. This opens the possibility to have for the first time a framework where
gpatial diffeomorphism are represented at the quantum level. Moreover, our construction& nbsp;leads naturally to the picture that the relevant
geometrical degrees of freedom live on boundaries, that their dynamics and the fabric of quantum space itself is encoded into their entanglement,
and& nbsp;it is designed to offer a new setting to study the coarse-graining of gravity both at the classical and the quantum levels.
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Gravitational edge modes:
from Kac—Moody charges to Poincaré networks R o

Daniele Pranzetti

Based on work in collaboration with Laurent Freidel, Etera Livine and Alejandro Perez
) Phys. Rev. D 101, 024012 (2020), [gr-qc/1910.05642];

) Class. Quant. Grav. 36, no. 19, 195014 (2019), [hep-th/1906.07876];

» Phys. Rev. D 98, 116008 (2018), [hep-th/1806.03161];

) Phys. Rev. D 95, no. 10, 106002 (2017), [gr-qc/1611.03668].
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Central perspective

In our quest for quantum gravity, an essential task is to reach a proper understanding of the
degrees of freedom and of the symmetries of gravity associated with local subregions.

* Three interlaced insights:

¢ Local holographic behavior of general relativity: Black hole entropy

-> The total number of microscopic DOF scale with the horizon area.

¢ Canonical gravity: General relativity is a constraint system

-> The total energy associated to any space like region is entirely encoded in its boundary.

¢ Gravitational edge modes can be assigned to any boundary surface in space: Boundary symmetry algebra

-> Gravitational edge modes as boundary symmetry algebra representation states. [Donnelly, Freidel, JHEP 2016]

9

The relevant geometrical DOF live on boundaries:

Their dynamics and the fabric of quantum space itself is encoded into their entanglement

This entanglement is derived from the fusion properties of the gravitational boundary symmetry algebra
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A brief history of gravitational edge modes

It all started with trying to understand the nature of black hole thermodynamics and/or infinity...

Introduction of new boundary DOF in order to restore the differentiability of the Hamiltonian constraints
(canonical formalism): [Regge, Teitelboim, Annals Phys. 19741, [Carlip, PRD 1997, PRL 1999].

Understanding of Kac-Moody symmetry as an edge mode symmetry in 3D Chern-Simons theory: [Elitzur,
Moore, Schwimmer, Seiberg, NPB 1989], [Balachandran, Bimonte, Gupta, Stern, IJMPA 1992], [Banados, PRD 1996].

Covariant formalism and “membrane paradigm” representation of black holes: [Brown, York, PRD 19931, [Thorne,
Price, Macdonald, 1986].

Black hole entropy in Quantum Gravity (counting a set of boundary Chern-Simons edge modes): [Smolin, J.
Math. Phys. 1995], [Ashtekar, Baez, Krasnov, Adv. Theor. Math. Phys. 2000], [Engle, Noui, Perez, DP, PRD 2010].

Deep connection with the renewed understanding of the meaning and importance of the asymptotic

symmetry group and the corresponding soft modes in the study of the S-matrix: [Barnich, Troessaert, PRL
2015], [Strominger, 2017 and references therein], [Hawking, Perry, Strominger, PRL 2016, JHEP 2017], [Averin, Dvali, Gomez,

List, JHEP 2016, Mod.Phys.Lett. A 2016].

Renewed inferest in understanding the nature and dynamics of gravitational edge modes for finite
boundaries: [Freidel, Perez, Universe 20181, [Freidel, Perez, DP, PRD 2017], [Geiller, NPB 2017], [Wieland, CQG 2017], [Camps,
JHEP 2019], [Freidel, Livine, DP, CQG 2019, PRD 2020], [Asante, Dittrich, Girelli, Riello, Tsimiklis, 2019].

2D Jackiw-Teitelboim gravity and black hole states: [Blommaert, Mertens, Verschelde, JHEP 2019].
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But what is an edge mode?

Well, edge modes are:
1. Conjugate momenta to the boundary charges;

2. Representation states for the boundary symmetry algebra;

Operator - State correspondence )

From the perspective of canonical general relativity, the edge modes live on corners, that
is the 2D boundary surfaces of 3D regions of space-like hypersurfaces. In the context of
holography, they are supposed to reflect and represent the DOF of the 3D geometry.

Since classical spacetime is thought as a manifold, a.k.a. atlas of charts (union of bound sets),
space can also be modeled as the union of 3D regions glued together through their interfaces.

Gravity = theory of edge modes living on the boundary
of these pafches of 3D geometry

Space = network of "bubbles”

Quantum gravity = Dynamical networks of quantum edge modes

# Coarse-graining of gravity as fusion of boundary symmetry charges (see, e.g. [Dittrich et al.])
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Our framework in a nutshell

1. Reformulation of the (kinematical) Hamiltonian constraints of general relativity

¢ Two main
ingredients:

as conservation laws for boundary charges on 2D surface (the corners);

2. Introduction of distributional sources of curvature and torsion on the boundary

surfaces and description of the structure and algebra of edge modes that they induce.

Started with the ‘loop gravity sfring' framework introduced in [Freidel, Perez, DP, PRD 2017]
and it resonates with ideas of [Wieland, Annales Henri Poincare 2017], [Asante, Dittrich, Girelli, Riello, Tsimiklis, 2019]

We aim to study the structure of kinematical edge modes living on the punctured 2D boundary surface

A 3D region with 3-ball
topology and its boundary
surface punctured by disks
representing its inferfaces

with the neighboring 3D cells.

@\\\ /ﬁ’\
N A /

"

The punctures are sources of
curvature and torsion on the
boundary, assuming that the
geometry is flat everywhere
else. These defects propagate
to tubes in the 3D bulk.

The 1-skeleton reduction of
the tubular structure
encoding the edge modes
on the punctured surface.
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Upgrade spin networks to tube networks in LQG:

® Representation of spin networks for a g-deformed SU(2) gauge group in terms of conformal blocks
[Markopoulou, Smolin, PRD 1998] or in terms of the moduli space of flat SL(2, C) connections on the tube
surfaces [Haggard, Han, Kaminski, Riello, Adv. Theor. Math. Phys. 2015].

* To take into account both SU(2) holonomies about and around graph edges as double spin networks
[Charles, Livine, GRG 2017] or to use Drinfeld tubes [Dittrich, JHEP 2017], [Delcamp, Dittrich, JHEP 2018].
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Loop gravity string framework

We derive the algebraic structures living on the tubular network directly from an analysis
of the symmetries of general relativity in the presence of boundaries and we dress the
surface networks with actual gravitational edge modes.

g

New observables (that cannot be defined in the standard LQG discretization):

e String vibration modes of the punctures, as derived in the “loop gravity string’ framework
introduced in [Freidel, Perez, DP, PRD 2017]

® New momentum observable defining the boundary charge induced by the bulk invariance
under 3D diffeomorphism

- Quantum states of geometry carrying a representation of the 3D diffeomorphisms of general relativity
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The setting: First order gravity

Considering a space-like Cauchy hypersurface Af in a 3+1 foliation of spacetime,
we focus on a bounded 3D region BB and its 2D boundary S

sl Flux 2-form (through the simplicity constraint)

normal to M connection
. I v o 0 ; i i 1 PR
*Time gauge: dn' =0, n=e'n;=c¢ A'=T"+yK", E;=—e¢ el ne”:= (exe);
2Ky 2Ky
k=810 coframe fields tangent to M

: . 1 . -
symplectic 2-form:  §2= 5 + (g = [ (0A* ASXE) + 5 f((’}r', Ade') The extended phase space
B Ky JS

Poisson brackets: { A’ (), E{;{_(y]} = k07 €03z —y)  {ei(x), ("fjf\e’;')} = kY6 €62 (z — 7)

bulk phase space boundary phase space

The bulk fields are given by an SU(2) valued flux 2-form 3" and an SU(2) valued connection A*

_ . daF;=0 h
daX; = 0, 2 '.P.-EZ%' =0
¢ Kinematical Bianchi identity ->
constraints: Gauss-law 3D diffeomorphism i Conservation law for SU(2)
constraint I magnetic charge F.
EeTM,

{ Duality between electric and magnetic modes in gravity

1¢ = interior product
< P i (in analogy with EM [Freidel, DP, PRD 2018]) )

I
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A puzzle

In loop quantum gravity we have an asymmetric treatment of the Gauss law and of the 3D diffeo constraint.

® The Gauss Law is is discretized on graphs into the closure constraint. One construct then an Hilbert
space in which it acts covariantly and SU(2) gauge invariance is then implemented at the quantum level
by restricting to spin network states.

e The diffeomorphism doesnt admit an infinitesimal representation. There is no 3D diffeomorphism
constraint at the discrete level, thus no 3D diffeomorphism constraint operator at the quantum level.

One represents finite diffeomorphism by their action on the support of the state and imposes the diffec
constraint by taking equivalence of graphs embedded in the 3D hypersurface M (group averaging).

§

1. The 3D diffeomorphism invariance is not treated on the same footing as the SU(2) gauge invariance;

2. It is not clear how matter fields, which enters the Einstein equations as a source for the diffeomorphism
constraints, should be discretized and quantized;

D, = T'”h-n,'r’ <— Matter momenta density

3.It is not clear how boundaries, which break 3D diffeomorphism invariance, should be treated and how the
resulting charges should be defined.

Page 10/27



Towards democracy: Constraint as conservation law

The key idea is to understand the constraints as conservation law for "charge aspects”

e Gauss Law: d42; =0 s a conservation law for the “SU(2) electric charge” or flux %, = f o'y,
s

e 3D diffeomorphism can also be written as a conservation law for the "SU(2) momentum charge” I = qu"!’f

i

dae; : 1e€
where Pji=——_  ('= £
VEY Ky
Proof: De = - ) NP
8 .
simplicity constraint 1
N T S — = F' A (e xige);
Kyt = (1ge x e); kY JB
1 -
- — [(Fxeng
KY JB
Bianchi identit 1 2 i
i — = — [ (de)¢

d‘ic = (F xe);

.r‘i"']r'
f (duP) €' o
B

Pirsa: 20040083 Page 11/27



¢ Kinematical constraints as charge conservation:

da¥; =0, daF' =0, daP;=0.

. Momentum
Flux conservation Monopole

. . : conservation
(Gauge invariance) conservation

(Diffeo invariance)

As a result, we will discover that quantum states of geometry are labelled by three quantum numbers:

Jp kp Fp

Monopole

Spin charge

Momentum

In order to reveal these new charges, we need to include boundaries in our description
and look at the edge modes on the boundary surface.

Pirsa: 20040083

Page 12/27



Edge modes on boundary surface

In the presence of boundary, the bulk constraints in B have to be supplemented by boundary conditions
on S. These boundary conditions defermine the symplectic structure for the boundary fields and reveal
the edge mades living on §.

Punctured boundary sphere Set of punctures

Sp =]_:111[1]5'L P={z,eSp=1,-N)

where Sp = 82 5 UpD; is the complement of a union of the small disks Dj,

Boundary conditions

¥alx) 2 % (e xe), F'(x) Son b3 k; dolE), P'(x) Son 2 P; dul ).,

P p

Source of curvature Source of momentum
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We now explain how these boundary conditions naturally appear from demanding
the constraints to be differentiable in the presence of a boundary

® Gauss law: [B a'daZ; no longer differentiable -> add a boundary term

Bulk Gauss generator: Gf = ffﬁ daa' A% = ﬁ} a'dad,; - Laiz,;

but, ;f =0 ifandonly if «a'X; 2 0 — gauge invariance broken by the presence of the boundary

1. The Grandma’s remedy: accept this fact and promote the non-vanishing charges

f{:r"& = Symmetry charges
s

2. The LQG remedy: impose Gf | N Z:}I_‘Q(_; = Z X, 0,(x)
P

Symmetry charges = loop gravity fluxes X, associated with each puncture.

3. The loop gravity string remedy: introduce edge modes that restore the gauge symmetry
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Goi==- qua'f\ L@ iexe);
® SU(2) gauge constraint:
f a dJ_Z + f o ]
Gu =i = Gauss law in the bulk + Simplicity constraint on the surface

Boundary Simplicity constraint = Continuity condition

New symmetry charges

- dig = (211’“,‘)7] ﬁ O;'"i({,? xe); act only on the edge mode variables and rotate them

* Advantage: it becomes clear why the symmetry charges satisfy a non-commutative current algebra

{€4(2),ep(¥)} = r767eapd®(z,y)  »  {Za,Ts} = Saxs
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e 3D diffeos: Differentiable generator of diffeomorphism

D=0
D¢ = - f Fi(A) A1eD; - L3 f (1ge')dae; + Ly Z jﬂ elice; imposes diffeomorphism constraint
B Ky JSp 2R pep 4 Co away from the punctures
JEAGE= Dg’ symnelry
i , . , . PS=0
Momentum constraint (equivalent to the diffeomorphism constraint) i
) Translational gauge constraint,
B _f(d’j‘l’:)" WP 1 % jg e; equivalent to the diffeomorphism
ZB VEY pep 4 Ce constraint (for invertible frame)
gauge = P{ W @ = (rrd.-)_% 1g€’
i i 1 il
oy Non zgro charges associated M .9( etuce; | P, = ?/: e i
with each puncture: b 2y Jda, k- : /Ky JC,
e N

Virasoro generators of deformations

(1 3 g
of the puncture contour (1)" Mo fiomiy curmerits

w Central charge appears already at the classical level: {_P&P@}é Z }g &idag'
pelP P
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Democracy ain’t perfect

Yilz) 2 e LK e)i, Fen) 3 27 ). ky 0p(), i r) 2 QWZP; Op(2)y
K7y p p
Loop gravity string remedy LQG remedy
Gompusitessinuciurernt P, = 0-modes of the Kac-Moody currents

the geometrical flux

Mode expansion of the
conserved currents requires

Holonomy of the connection around holonomies are invisible.
k, € ZIN .
) ! ) the punctures is trivial: exp }g A=1 2. We can treat curvature
We restrict our analysis to the case Cp X
charges £, as classical labels.
kpeZ.

* Introduction of magnetic edge modes may solve disparity...
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1. Although curvature is Planckian,
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The loop gravity framework

In presence of a boundary surface S, there are boundary charge densities (X, P)

Boundary conditions away from the punctures:

n % 2
2Ky

(exe);, F(A) 2 0, P

By solving the curvature and momentum constraint on the boundary,
we can introduce currents to express the frame field around punctures.

¢ Current mode expansion:

- Q2 := 5& RELREY modes of the frame field
e o, v pulled back on the circle
P‘;T = Q;,—A—;g momentum
(2}
32 ) 0
p &) < Yo zero mode ‘position
» <k

observable conjugated to P
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Poisson brackets for the phase space associated to a single puncture

{X“ Pﬁ’} = 5;»;*’5”5*

P!

L= { 0 Q!a }

P, p’m

sab RAY
—i0ppr 0™ (0 + k.p [/ Sege

————

The structure defining each puncture becomes the 1D boundary around the puncture C),, which
can be thought as a string. This leads to a zero-mode string position and momentum (X“, P"),
and tfo an infinite tower of higher/lower modes (), describing the vibration modes of the string

and generating a (twisted) u(1)3 Kac-Moody algebra.

Since we have assumed that the curvature charges k; are integers,
we can entirely re-absorb them as shifts of the mede expansion:

a® = C'Ju at = ot

Ip:u p_n.—ﬁ.:_;‘} ’ n -1 1
Shifted charges
a =b - gab g
{af, al,} = —ind*6, m

n?
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® Flux as a composite object:

The total flux can be written as a sum of fluxes at each puncture: Eg,'(ﬁ) = ZG(LE;
P

) ; ; i { O Xy )™
Tp=ApH Sy, Ap=(XpxB)t Spi=o ) e - n
7 !

String (O-mode) angular momentum (in internal space)  spin encoded in the higher vibration modes

n=0

Ap's and S,'s each form a su(2) algebra and commute with each other -> su(2) Poisson algebra for the flux

The flux closure condition: Z Zj, =0 implies also the momenta conservation condition ZP;; =0
» P
(no physical relevance of the string pesition)

® Hilbert space of the Quantum Puncture:

Basis stafes labelled by the momentum 7 ¢ R® (zero mode)

7

in terms of the numbers of quanta N, € N (higher modes)

L at . a

and diagonalizing the oscillator energies £ = o '), ;

Pr.l'.

p.{N}) =p* 5, {N2}),  Eq,[B.{Na}) = noNy,

[j_‘ {‘V::}>

a-f,i” |j_j, {J\'S ) =/ 'F?.(]A'rffu ‘ﬁ‘ ‘II\I[';;[Z- -1, {J'V,F:'}n.:'nn) ~ a (cx
where |5, {N;}) = []

(“’iuf P, {N}) = \/ '”-U("\‘!faf” +1) |, N;:ﬂ + 1, {Np }rieno) a.nzl N3
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Virasoro generators

1 al a® ifn>0
. ot R s % b 3 ]
Sugawara construction: L,=- E E PO, Y where i ants aen o L
2 3 2 a .. b t n<0
@ med a,a,, 1IInsbl.

- [Lna Lm] = (ﬂ = '”’-)L?r b T %n(ng o 1)(5-111‘-111,{]

On the completely algebraic level, we obtain a Virasoro algebra with ¢ = 3

1 inf _a _ modes of the Hamiltonian symmetry charges e 1 .
& Eg€og = k B i £ = 2 € teey
associated to diffeos tangent to the circle 2ky JC,

They generate reparametrization of the string around the puncture
and encode all local angular deformations of the geometry

1

Zero mode generator = Total energy Lo =

|5, {N}) = States of highest weight representation of the Virasoro algebra for each fixed value of 7€ R”

— = Ta . . a|= @ | = — 1 D .
Ip) = |p, {IN; = 0}) = Highest weight vector: P|p) =p"|p), Lo |p) = ipz 7). L1 |py = 0

Til l i ot g i : AT AT
b, {Na}) = (§p2 + Z\) AN} with  No=2 N

Other states (descendants): Lq

i
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Poincaré basis

The geometrical flux S=A+S5. where S = Z 5',,, ->  su(2)-algebra part of the Poincare isu(2)-algebra:

nzl

[l:tl_ >ij] i ?:t(lflt'>:r_‘? [xr:- Pb] = iﬁr;bc:!)r‘ [Pﬂ'q }-)b] = O

§

Change of basis states adapted to the flux, i.e. diagonalizing the su(2) Casimir 52
which diagonalizes the Poincaré Casimirs as well, namely P? s = . P.

P2 |A s, T, M,I)
-P |As,T,M,I)
£ |A,5,T,M,1)
3 |A, 8, T, M, I}

A |A, 5,7, M, I},
= g A, s, T, M. I},
J(T+1) |A s, T, M, T},
M A, s, T, M, I},

The states |A, s, 7, M) form a representation of the Poincaré algebra

energy carried by the 0-mode
4
with S|I)=0,A and 5 are the Poincaré Casimirs, and the total spin J is the LQG spin.
A .
Intertwiner between the overall S and arbitrary spins {j-,,}ne_m , associated to the spin higher modes S,
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The gravity string can be understood as the quantum geometry of the local
subsystem with excitations of quantum space localized at punctures on the
boundary surface (point-like sources of curvature and torsion) and encoded in
stringy charges forming a Kac-Moody algebra around each puncture and
containing all the information about quantum geometry in B and its boundary 5'.

New CFT perspective of gravitational edge modes and the LQG discretization of geometry

(0-mode of the Kac-Moody algebra carries momentum P — A = P? conformal weight of the primary field vacuum state
-> boundary charge associated to 3D diffeomorphisms)

The DOF around each puncture allow fo glue bounded regions together so to
reconstruct the total Hilbert space associated to the whole canenical hypersurface.
This gluing process can be more easily described by ‘flattening’ the gravity string

We extend this distributional curvature localized at the punctures
to the bulk region enclosed by the 2-sphere. Consider a 2D tubular
structure connecting all the circles around the punctures:
Curvature propagates from one puncture to another inside the
tubes, but it vanishes outside.
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New quantum states of geometry in terms of this tubular structure with the tubes around each gravity
string dressed with quantum puncture states, in the Kac-Moody basis with quantum numbers (15- {N,{f})p or
in the recoupled spin basis with quantum numbers (A, 3,T, M, I)p.

B

* Edge mode networks represent the portioning of space into "bubbles” bounded by surfaces.

e Each patch of the boundary surface carries algebraic data that forms the representation of the boundary group
of symmetry.

e Each bubbles of space is represented by an intertwiner, a form of conservation law at the vertex, and those
chunks of quantum space are then patched together by gluing the cylinders around the curvature defects
through appropriately matching and propagating the quantum numbers of the puncture where the gluing happens.
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Coarse graining: Poincaré networks

® The coarse graining operation consists in keeping only the zero modes, the SU(2) flux X and the O-mode
momentum P in the boundary symmetry algebra. It corresponds to a particle limit of the cylinder, with the fine
structure of the Kac-Moody higher modes is effectively hidden within the flux.

e In this limit, each edge carries a representation of the Poincaré algebra isu(2). A new charge appears: The
momenta P.
T b abey ~a by _ - abe pe C by _
[L;, Lw] = 3e” L;, [L;, Pp’] = 1e™ [Pp, [P;,PP] =0

The quantum puncture then lives in the Poincaré representation with Casimirs A,.s, and quantum basis states are
further labeled by the spin J and the corresponding magnetic moment.

® The conservation laws of flux and momenta on the punctured surface are imposed by dressing the vertex with a
Poincare intertwiner state tu, implementing invariance under the 3D Poincareé group ISU(2) of the tensor product
states of the quantum punctures around the vertex.

¢ LQG corresponds to a further truncation where we simply ignore the momentum information.
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Summary

* We have seen that the edge modes formalism captures the nature of local degrees of freedom
involved in the division of the system into subsystems. This process is realized as a creation of
boundary defect and space can be understood algebraically as the fusion of states associated
with boundary symmetry algebra (generalized Kac-Moody). This understanding opens the way
to a new description of quantum geometry where features of the holographic and cancnical
approaches are combined.

* We have exploited the appearance of a central charge in the algebra of the fundamental
harmonic oscillators tfo construct representations of the infinite dimensional boundary
symmetry algebra. This led us to the introduction of new quantum geometry states labeled by
quantum numbers associated with both the geometrical flux and the diffeomorphism charges.

¢ We have shown how a truncation of the loop gravity string description of quantum geometry
to the zero mode sector allows us to put the diffeomorphism constraint on the same footing as
the Gauss law. It becomes implemented as the closure condition for the edge momenta at
each node of the network. This coarse graining of the charge of symmetry leads to a
representation of space as a Poincaré charge network.
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Outlook

e This opens the possibility to finally have a representation of local matter inside a quantum
spacetime. Now that we have a representation of space-like diffeomorphism as an operator, one
can finally think about the insertion of momenta as the introduction of a topological defect
inside the charge conservation law. The matter momenta will naturally appear at the vertices
of our network, like in 2+1D.

e We have only discussed the kinematical constraints. Even if we now have a definition for the
quasi-local momentum operator, we do not have a description of the quasi-local energy. New
ideas are presumably needed to generalize the gravitational conservation laws described here
to the gravitational energy and to obtain a representation of the full dynamical algebra
(better understanding of coarse-graining operations and fusion / entanglement between
subregions; look at null surfaces - see e.g.[wieland, CQG 2019]...).

® Get rid of the time-gauge and repeat our construction including the boosts: Second CFT copy?
Modular invariance <-> Simplicity constraint + Immirzi duality? [w.i.p. with Freidel and Geiller]

e Revise the black hole entropy calculation employing CFT techniques. [Hawking, Perry, Strominger,
PRL 2016, JHEP 2017], [Averin, Dvali, Gomez, Liist, JHEP 2016, Mod.Phys.Lett. A 2016]
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