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@ Recordin

Quantum Discrete (locally independent) z- 4
Resulting from symplectic geometry

GeomEtry of (extended) phase space for geometries.
Quantum Dynamics.
Gravity

Input: Discrete (locally independent) area spectra.

What dynamics can we expect from, e.g. a path integral?
Is this dynamics consistent with GR dynamics?
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@D Hecor |

Discrete area spectra: a robust feati

(Kinematical level, Euclidean signature)

* LQG: From a rigorous (continuum) quantization of phase space of geomeﬁest
Via extended phase spaces (gauge theory, higher gauge theory):
Only way so far to deal with triangle inequalities. But issues with reduction.

angle

* But also heuristically from Regge calculus: {A,(/),0,} = 1.
Suggest an (asymptotically) equidistant spectrum for the areas.
But possibly not ‘locally independent’.

* (weak) holographic principle

* (black hole) entropy counting

* Ryu Takayanagi conjecture: Areas as more fundamental variables?

* boundary observable algebras

Area spectra: A=n/i+D, j=0,

A=M0ts) ., n=01,..

v | —
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Minimal input: Discrete (locally independent) area spectra.

What dynamics can we expect from, e.g. a path integral?
Is this dynamics consistent with GR dynamics?

To be able to say something about the dynamics:
Build simple models (as simple as possible).
Concentrate on key issue.
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D Recor ling

Frank opinion slide (o discussion)

o
Why are spin foam amplitudes so .. @am“ comp 3
u|| L nnfyp - & A

At least five different models.
No agreement on flatness problem after 10 years (even for simplest example: three 4-simplex configuration).

e Historically: Hoped to be an exact quantization of quantum gravity.

* However: Models with local amplitudes break diffeomorphism symmetry,
and are triangulation dependent. Do not impose the Hamiltonian and diffeomorphism constraints.
Without this, no criteria to resolve the many discretization ambiguities.
No agreement (on whether or) how to do sum over triangulation. (You should not.)
Do not deliver on key criteria for a background independent theory of quantum gravity.

[BD 2012,2014,

* Rather: Spin foams can serve as starting point for a dynamics constructed via renormalization flow. +Bahr,Cunningham
Flow from IR (known) to UV (unknown): which UV amplitudes are consistent with IR dynamics?  Delcamp,
There is no washing out of UV physics. Martin-Benito
Steinhaus, ]

For coarse graining and everything else:
Need a model you can calculate and reason with. Otherwise it is a waste of time.
Make sure it delivers on IR dynamics.
Many details will be fixed by requirement of (coarse graining) consistent amplitudes.
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rding

Frank opinion slide (o discussion)

QDR
Why are spin foam amplitudes so q’,@m@m@g‘:oml

At least five different models.
No agreement on flatness problem after 10 years (even for simplest example: three 4-simplex configuration).

Necessary (?) part of the complication:
Quantum geometry techniques arising from (higher) gauge reformulations of gravity:
to be able to quantize phase spaces with a very complicated topology.

[Ashtekar, Rovelli, Smolin, Isham, Lewandowski, BD, Freidel, Krasnov, Livine, Speziale, Ryan,
[Quantum Geometry via BFCG: Asante, BD, Girelli, Riello, Tsimiklis 2019]

Remark: Here we happen to choose (unconsciously) locality over the non-local restrictions imposed by
geometricity.
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Overview

. Semi-classical limit and classical actions for discrete GR

2. Quantization: imposing discrete area spectrum and GR dynamics (as good as LQG can)
3. Features: spin foam model with resolution of the flatness problem (as good as LQG can)

4. Two different choices for quantization: phenomenological consequences
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€D Kecor [)

emi-classical limit of spin foams

All models involve intricate recoupling symbols and
give for the one-simplex amplitude in the limit of large lengths:

A, = cos (Regge action) + degenerate configurations

[lots of worlds]

* but models differ in which variables are used: will be essential

* cosine: from sum over (tetrad) orientations

* degenerate configurations: from first order/ gauge reformulation
possibly dominating, highly problematic
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‘Q‘J Recor |

emi-classical limit of spin foams

All models involve intricate recoupling symbols and
give for the one-simplex amplitude in the limit of large lengths:

& = cos (Regge action) + degenerate configurations

o [lots of worlds]

* but models differ in which variables are used: will be essential
* cosine: from sum over (tetrad) orientations
* degen igurations: from first ordecrl.gewge reformulation

Ly dormiae—
possibly dominating

o

* To be able to reason about the model and to calculate something we work with:
,_Qfﬁ = e.xp([ Regge action) (Could also use the cosine.)
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Regge calculus: discretization of geometries

Length Regge action GR dynamics
Area Regge action not GR dynamics Barrett-Crane
c trained A R ti GR d . corrected
onstrained Area Regge action ynamics Barrett-Crane

Tmteqrat@ out angles
- integrate out angles

Area AngIe.Regge action

- GR dynamics new new
(new version) spin foam model
~~
Area Angle Regge action GR dynamics

(2008 version)

Note: Historic inconsistency in naming. Area Angle Regge actions are also with constraints.
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O Recording

Length Regge calculus — a discretization of GR

Yy’
‘/dihedral angle /- ’
St = > wA() 4+ Y 2w A = > AW (1)

tebdry t€bulk o JDa - "
S,(D) S_(])

Equations of motion (Einstein equations): Deficit angle = curvature:
AA(l) ) g Allow for solutions
§ (){{ () =0 ‘L!-(l) = 27 — E :{)f. (l) with curvature.
tDe oDt

But we want to impose discrete area spectrum: need area variables.
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Area Regge calculus — imposing flatness, featur

cordin

A 4-simplex has 10 triangles and 10 edges.
We can invert lengths for areas: L[(«a,) .
(Modulo discrete ambiguities, ignored for this talk.)

10 triangles,
10 edges

Can write action contributions as functions of areas: a,
Si(ay) = 2may So(ar) = So(LC(ay))

Sarla) = 3 Sia) + 137 Sia) =3 So(a) ~ Z a,efa,)

tebulk tebdry a teblk
Equation of motion:
) Solutions are flat [Barrett, Roceck Williams 1997,
(:{ ((fr[) - (] ’ Asante, BD, Haggard 2018]

Obviously not the dynamics of GR.

Quantization of Area-Regge calculus (most likely) given by Barrett Crane model.
We will see how to ‘repair’ it!
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Constrained Area Regge calculus

10 triangles,

10 triangles,
10 edges

— 10 edges

16 triangles -> 16 area variables Additional degrees

14 edges -> 14 length variables of freedom!
4 triangles,

6 edges

T When we glue we match for the
shared tetrahedron:
-6 length variables: determines geometry of tetrahedron
-but only 4 area variables: underdetermines geometry of tetrahedron

Need to match two further geometric quantities:

Two 3D dihedral angles (at non-opposite edges) Other choices are possible.

/
(l) 7,07 (”{ ) — (I)‘T.{T (”, )
; e .. “1 : €l 1 For the two-simplex configuration:
G|UII’19 Constraints: ('I)Tﬂ(uf) — (I)T'”’ (m) Reduce from 16 to 14 independent variables.
(5D 'L (&) o~
t t
10 areas from o 10 areas from o’
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) Recordir

Constrained Area Regge calculus

10 triangles,
10 edges

10 triangles,
n 10 edges
T —

16 triangles -> 16 area variables
14 edges -> 14 length variables

~y ' ~ > .
Scar(ag, AS) = Sar(ar) + E E A (cl):;“(u,t) —®.7 (m))
T=0No’/ GET v

NOT additive over 4-simplices.
Depends on all 16 areas of the two 4-simplices.

Equations of motion: equivalent to length Regge calculus.
BUT: Apart from keeping areas fixed on boundary,
need to also fix 3D dihedral angles: functions of areas (one step) away from the 3D boundary.

NO strict 3D boundary/ canonical formulation: need to know areas of all the 4-simplices glued to boundary.
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‘(Constralned) Area Angle Regge calculus V.|

Let us add as variables two 3D dihedral angles ((/) ¢.,) for each tetrahedror oy
(We can choose to take all six angles, but would have to nnpoae closure/ Gauss constraints.)

Adding more variables we have to add more constraints:

For each pair 7 C o ‘f)I, - q;rf (ar)

gT 7,0
(1‘,)(‘-) (T)('g (“’Q\
= 10 areas from &

3
e
¥
) ! ! c 7 /
Impose gluing constraints: ®©.:7(a;) = ®.7 (a) py
'

. ! _-;""" A
(l.’I_;,o(f-'-!) = (-l-)j-';j (ar) . k

Action (leading to length Regge EOM):

Additive over 4-simplices.

_ p———

Saari(as, oo, AYy) = Sar(ar) + Z Z Ao (P07 (ar) — ¢f.)

a T T

Admits
boundary/ canonical
formulation.

——

B

e —— S( ‘AR ((I.[ s /\;i' ) Reproduce Constrained Area Regge action.
solve for 3D angles
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-(éonstrained) Area Angle Regge calculus V.2 (bt

[BD, Speziale 2008]  The same as before but rather use a different (more local) form S
For each triangle f C 7 N 7" with 7,7’ C o we need two constrall

, r’ /
Fortwo 2D angles in 11« o(a, ¢p.) = o] (ar, o)

6 variables determining 6 variables determining
geometry of Xy o _ geometry of
T ' T
\ a, /
ac’-'.c—" Match 3 variables which determine

geometry of ¢

Constraints are equivalent to previous set.
(Reduce 20 to 10 variables on a 4-simplex.)

This form of the constraints can be restricted to 3D hypersurface: Shape matching constraints.
Arise from (part of the) secondary simplicity constraints.
Need to be imposed on LQG to obtain Length Regge. [BD, Ryan 2009-12]

See [BD, Speziale 2008] for the full action: equivalent to length Regge.
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O

Plebanski: LQG: Phase

SO(4) gauge - »  SU(2) gauge —_— LengtP
theory theory I calculus

(BD, Ryan, Phase space reduction: Phase space reduction:
2008+]: a) diagonal simplicity constraints remaining part of edge simplicity
b) cross simplicity constraints =
c) part of (secondary) edge simplicity shape matching constraints
Second class constraints Partially second class constraints
imposed sharply imposed sharply
(Phase space: Dirac brackets) (Phase space: Dirac brackets)

A A
In current spin foams:

a) jdia‘_'génal simplicity c_onstféints

b) cross simplicity constraints

d: shape matching constraints
[EPRL, FK, Imposed (weakly) Not explicitly
Dupuis-Livine, ...]: in current spin foams imposed in current models
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Path integral

To impose discrete area spectrum:
Use areas as variables.
Simplest choice: Constrained Area Regge Formulation
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-Pélth integral for Constrained Area Regge Fot

LD Hecor lin

Z Hf(@t) ]‘_[flfl_[“":l H 2 oNo’ ({at}téoo’)

at€ES, Couples two 4-simplices

area spectrum
A, = ¢ \p( o(ar))

Triangle weight
Simplex amplitude

4, = vxp(}f‘iwu;)

Y70 . 7
l if constraints Pi"(ar) = @57 (ar)
{ are satisfied. ({_:(”’!) _ ‘T’:;; (ar)

if not.

T oMo’ ({af}f%(TUrT) =

Model does not work.

Follows also from constraining (ala spin foams) higher gauge (KBF) model for quantum flat space time.
[Mikovic,Vojinovic] [Korepanov, Baratin, Freidel. Asante, BD, Girelli, Riello, Tsimiklis;]
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Path integral for Constrained Area Regge Foi

2 Recording

Model does not worlk.

b7 7.7
I if constraints e () P17 (ar)
70 By — are satisfied. O (a _ <l>”” ‘a
IT:(_T(W(T, ({(Jlt}['E(TLJU,) - { 0 ' : (&5 ] (( f) (&) (f.f)
if not.
L (ar) = L7 (ar) For discrete (approximately equidistant) area values this gives

diophantine like equations.

DI (a O (q e . . :
ez (@) er (a0) Almost never satisfied. Leads to huge reduction in density of states.

Solution: Weaken the constraints. But by how much?
Need to find compromise between: Sufficiently many states and correct dynamics.

LQG phase space or Kapovich-Millson phase space:
3D dihedral angles in a tetrahedron do not (Poisson) commute.
Constraints cannot be implemented sharply.

Conjecture:
Following LQG phase space (quantization) we obtain the “correct” density of states.
Can be done “fast and simple” or by making use of quantum geometry/ LQG techniques.
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-Den'sity of states

One (symmetry reduced) Two (symmetry reduce sk A

4-simples with P lengths 4-simplices with P Iengﬂo

parameters parameters, with shape matching
weakly imposed

No. af leneth configuraii

No. of length canfiguration
af tength configuraiion

P
N N
Number of configurations with Number of configurations with
all lengths between N and (N + 1): all lengths between N and (N + 1):
~ NI) — Nl)
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Phase space for a tetrahedron / Intertwiner

Classical:

« fix areas of a tetrahedron

+ remaining degree of freedom: two 3D dihedral angles
+ Kapovich-Millson: symplectic structure on this configuration
- results in two-dim. phase space with Poisson brackets

Sin o y cancels out if
{D1. b2} = () y-dependent spectrum
a is used

<X
/\b

Quantum:

« four angular momentum vectors with global rotation symmetry imposed
nvZ(H=V, ®V, ®V, ®V, / Su(2)
+ one quantum number: recoupling spin — encodes dihedral angle(s)

Ji

J3

Pirsa: 20030114
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Phase space for a tetrahedron / Intertwiner

Classical:
+ fix areas of a tetrahedron =y
« remaining degree of freedom: two 3D dihedral angles o
Kapovich-Millson: symplectic structure on this configuration
results in two-dim. phase space with Poisson brackets

S1n o y cancels out if
{D1. b2} = (1) y-dependent spectrum
a is used

Tetrahedral coherent states / coherent intertwiners:

- states peaked on phase space point (®,, ©,)
* resolution of unity provides measure
+ different choices for parameterization and variables

[ Perelomov — Livine-Speziale, Bonzom-Livine, Freidel-Hnybida, ...]
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Path integral for Area Angle Regge Formulatic

D RECOr fin

Need to implement constraints:
\T Ty T (
: HT
(./)('| = ¢ € (”‘-')
T T 7O (
(/)(‘2 — (bf‘;! ((l;_)
Coherent states implement the constraints as good as possible (with minimal uncertainty):

Koo, = Ko, ,00,): (9L, D))
\

e

argument of wave function peaked
wave function around this phase space point
New simplex amplitude: Al "-"rl’ L, (a;)) H K4, pr )i (P77 (ar), D1 (ar)))
T a
Coherent states determine l_l r AT AT
integration measure for angles: dycoh((/)(w‘ {/)!‘:)
T
4
|
|
- T / |
Z = E ;L(U,)/Ild;f ((/)(l,d)(z) ||A;||A |
1t €S ‘
{

Coherent state transform: Express coherent states as wave-functions of e.g. S-channel intertwiner — 15] symbol.
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D Recording

The new new spin foam models

Hilbert space

Z = Y pla) /Hu‘f/r"r(rﬁ(l b, ) HA,HA’ |

€S,

A = exp(%b‘d((.{, ) H K((pL,, &L ); (P, D))

€]

Integrate out 3D dihedral angles.

Z pe(ag) H Ay H As H CLW:';M,({(L, Heauo) Corrected

\
|
| Barrett-Crane model.
(Lt &q” ‘

~fuzzy — (K f\ )
e anag' = ( P ”‘ T | 7,0/ lr.n’> Peaked on constraints.

l l 1 €y

Heuristic versions: replace constraint amplitudes by Theta-functions on uncertainty intervals.
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Flatness issue test: 3-3 Pachner move config

01234 7 ‘F\m 235
4 AN Three 4-simplices glued together.
N d J%’w;b No bulk edge —No summation in length Regge calculus.
m‘" One bulk triangle — In Area Regge calculus summation over triangle area,
i / forcing flatness.

Hope:
Our (weakened) constraints on Area Regge calculus allow only
a sum over a number of order 1 area values.

A simple argument shows: (Supported by numerical study)
The number of configuration one sums over scales with 1/ Area

I JArea
and -

{‘5(/} ~ 17
V Area dip

- ~ Area

= oOArea ~ \/I\reg

Constraining, but less than we initially hoped for.
(Quantum) Corrections to the dynamics: torsion fluctuations average over curvature.
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Ph

cordin

ehomenology and Falsifiability (starring at

LQG: Phase space for
SU(2) gauge »| Length Regge
theory calculus

| Phas ion:
‘ remaining pa ~gdge simplicity
| chhing consttaints

Rather:
weak imposition on Hilbert space
via quantum dynamics
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LQG:
SU(2) gauge - >
theory

Pirsa: 20030114

Forced by demanding discrete (locally independent) area spectrum.

Bound to have phenomenological consequences.

y-dependence due to not imposing shape matching.
Key question: How do the torsion fluctuations behave under coarse graining?

Effective continuum description?

P ehomenology and Falsifiability (starring at 1

Phase space for
Length Regge
calculus

We allow certain torsion degrees of freedom to (vacuum) fluctuate.
Really different from ADM/ metric quantization.

It is really torsion: shape matching imposes d,,d ¢ = 0. Riello, Tsimiklis 2019]

Krasnov: Family of models with choice of potential for simplicity constraints.

Rather:
weak imposition on Hilbert space
via quantum dynamics

[Asante, BD, Girelli

N )]
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There is an alternative (ignored so far):

LQG: Phase space for
SU(2) gauge - » Length Regge
theory calculus

| : BD, Ryan,2008+]:
| Phase space reduction: | yan |

remaining part of edge simplicity y dependence
- disappears.
shape matching constraints

That is a proper/ rigorous quantization of length Regge phase space.
Challenge: triangle inequalities usually resolved by going to gauge (or higher gauge) description.
Reduction leads to non-local Dirac brackets resulting from shape matching constraints.

Most detailed analysis so far: [BD, Ryan,2008+]:

Even on boundary of 4-simplex:
Discrete (locally independent) area spectrum — highly interdependent length.

Would BH entropy counting work out?
Areas are not independent anymore.
Arises also for LOQG with (weak) imposition of shape matching.
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Summary and Outlook ‘l'.",;fi.f:.?r‘)'.hyu

Input: Discrete (locally independent) area spectra.

\./'
Path integral which imposes GR dynamics as close as possible.

(As allowed by LQG Hilbert space/ quantum tetrahedron.)

* Can use simpler or more involved versions of the model
Theta functions vs coherent states. Exp(i Regge action) vs recoupling symbols.
Address one problem at a time.

» Key questions:
* How do torsion fluctuations behave under renormalization flow?
. . . } [Bahr,BD 09+
* Diffeomorphism symmetry wplated by curvaturt? and tor§|on. Asance, BD, Haggard 18]
* Understand quantum corrections for the dynamics resulting from torsion fluctuations.
* Continuum description?

Alternative quantization: rigorous quantization of lengths Regge phase space.

Difference in density of states? Black hole entropy?
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