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Abstract: In this talk, we present a new outlook on canonical quantum gravity and its coupling to matter.

We will show how this fresh perspective combines the critical elements of holography, loop quantum gravity, and relative locality. | will first focus
on the consequences of cutting open a portion of space and show that new symmetry charges and new degrees of freedom reveal themselves.& nbsp;

| will explain the nature of this boundary symmetry algebra in metric gravity and then first-order gravity. We will see that a rich structure appears
that explains from the continuum perspective the non-commutativity of geometric flux, the quantization of the area spectra, the nature of the
simplicity constraints but also reveals the dual momentum observables and finally alow to reconcile the elements of canonical gravity with Lorentz
invariance.

| will discuss the issue of quantization as a challenge of finding a representation of the boundary algebra and will give clues about where we are in
this process.
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Quantum-Gravity

* A good time to revisit the issue of
quantum gravity from first principles

* Many different approaches, lots of successes and failures.
It is a good time to regroup and learn from these and
understand what they have in common.

* First and foremost, The most important task we could do
is to predict new phenomena that will eventually be
observed. For me this means thinking about new
phenomena and new observables.
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Quantum-Gravity

* What have learned from
Loop Gravity, Holography, String theory.

* What are key successes and commonalities?

Nonlocality: A fundamental scale,a fundamental tension, a
fundamental quantum number N.

A discrete spectra of area or entropy.

A profound unification of matter and geometry for ST.

Pirsa: 20030091 Page 4/30



Questions

* What are the central questions, besides discovering new
observables prediction and phenomena!

* Ql:How do we reconcile the presence of a fundamental
scale with the relativity principle ?

* Q2: What are the fundamental degrees of freedom!?
What is the geometrical entropy counting?

* Q3: Can we think of quantum gravity as a fundamental
unification of matter and geometry!?

QG: matter = quantum geometrical defect.

ST: geometry is defined by interaction of extended probes.
Unifying matter and geometry is unifying the small and the
large. This why it is hard.
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Discretization and Symmetries
To define a quantum field theory system we need to introduce
a cutoff, ie discretize it,and then learn how to remove it
without breaking symmetries.

Take as an example Yang-Mills.

In the presence of a cutoff the gauge group as to be deformed:
Maximal momenta gauge transformations do not form a group.
One resolution is to put the system on the lattice.

In order to preserve a lattice version of gauge symmetry.
There is a catch: the E field have to become
non-commutative.

Continuum (B(x)§, E(y)}] =0, [E¢(x), Al (y)] = 657 6P (2, y)

Discrete — Bl E)] =00 C" K E} Why?

C—
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Discretization and Symmetries

The non-commutativity of the electric fields
is necessary to have a lattice version of gauge invariance

I J 1J K
[Ec ; Era’] = 0¢erC KEC

daE'=0 — Y El=0.
eV

Can we understand this from the continuum?
Can we apply it to gravity !

Which component of the metric should be taken as
commutative or not when discretized,
in order for symmetries to be preserve in the process ?
What are these discrete symmetries ?
Do they have a continuum analog
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Loop gravity: Results

* Loop gravity/Spin foam focuses on the BF formulation of
. _ | LKL
gravity where *Bry = g€k B

S = /B” A Fry(w), B!/ = *((%/\(i)]'] -|—"}’_l((i] /\(i']).

o

v_
simplicity

* LQG discretization assign to each edge of a network
generators generators B.”/which forms a Lorentz algebra

* The simplicity constraint is then written as a second class
constraint Boost =7, Rotation BY = %ééjl\;ng.

T

Immirzi parameter

* The Casimir of the Rotational part of B is the Area square.
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Loop gravity: Puzzles

* The main puzzle face by people outside LQG when looking
at it is the interplay there is between discretization and
quantization.

* |s the discrete area spectra an artefact of the discretization?

* Or can it been shown to have its source in the continuum?

* Why the Immirzi parameter (a boundary term) plays such

central role? Does it mean that everything commute in
in metric gravity ? ¥ =0

* The reason for the non-commutation of B is the
implementation of the discrete Lorentz Gauss law but
simplicity constraints implies a symmetry breaking

SL(2,C) — SU(2)

* |s the discrete area in tension with Lorentz invariance?
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Looking inside space

* How can we get a deeper understanding of what space is
made of, of what are its fundamental degrees of freedom!?

* We could admire it from far away, marvel at the perfect
geometry of some of its most symmetric solution: the
stationary black-hole and the mathematical beauty and
regularity of asymptotic infinity like most modern physicists

or we could do what any 5 year old would do when trying
to understand a new puzzle...
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Looking inside space

* How can we get a deeper understanding of what space is
made of, of what are its fundamental degrees of freedom!?

* We could admire it from far away, marvel at the perfect
geometry of some of its most symmetric solution: the
stationary black-hole and the mathematical beauty and
regularity of asymptotic infinity like most modern physicists

or we could break it open and admire its granularity

* In QFT spacetime is a holistic unbreakable object, the

source of all entanglement. It is not thinkable to cut it
open.
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Looking inside space

* How can we get a deeper understanding of what space is
made of, of what are its fundamental degrees of freedom!?

* We could admire it from far away, marvel at the perfect
geometry of some of its most symmetric solution: the
stationary black-hole and the mathematical beauty and

regularity of asymptotic infinity like most modern physicists
or we could break it open and admire its granularity

* In QG we discover new degrees of freedom that appear at
the edge of space when we cut it open: A new set of
boundary symmetries and conjugated edge modes.
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Gauge theory and boundaries

* In gauge theory the main source of entanglement comes
from the imposition of the constraints. In Yang-Mills for any
slice ¥ and in vacuum we have

d4E" =0 2

by
= x

* Due to the Bianchi identity any violation J of the Gauss law
behave as electric charges and satisfy dsj =0

* The canonical generator of gauge transformation §,A = dj«
is the canonical charge

G, = / daa AN E
J

B ————————
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Gauge theory and boundaries |l

* In presence of boundaries and after imposing constraints th
canonical charge becomes

G(E ~ / (.}{]E[
J O

* It satisfy the higher loop algebra [G., G| = G, g

* EAl is the boundary charge aspect which satisfy the higher
loop algebra

(B (x), B/ (y)] = C1 x EX (2)6®) (z — )

* The non-commutativity is already present in the continuum.
It is not an artefact of discretization. It is a consequence of
gauge invariance.
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Gauge theory and boundaries ll|

* Not only have we charges associated with constraints that
that generates bulk gauge transformations, we also have
charge associated with topological constraints

dafr =0

* We have electric an magnetic charge aspects

Go = / (-YIEI é(lf. - / (MIFI
JOX JS

* The full boundary symmetry group is a centrally extended
higher loop group QS « &S

* Central extension being the hall-mark of duality
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Metric Gravity

* We can now do the same analysis for metric gravity.
The bulk symmetry algebra is diffeomorphism,

* We chose a time foliation that possesses
entangling spheres:
places where time stop flowing.

Local holography: The hamiltonian
generators respecting S are
boundary operators

1 9
L=3vlg|R(g) —> Hg:/

Ed_“vaé-b-
S

———————)

1b

t t . .
€, = \/a(”uﬁ') - -S'”,’IL)) unit normal bivector
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Metric Gravity

z’ ds* = hf—zijdff-f'id-’ﬂj + qap(do® + Nf“da')(do” + Nfd:r.:":)
i ! I { I

normal metric tangential metric Normal lapse

Local holography: The bdy symmetry algebra is

Diff(S) x SL(2,R)”
The charge aspects are
Ko = 8(Hy' — H,"), K, = Hy° H,', Ky = §(Hy' + H\")

They form a local SL(2,R) algebra
[K}(O‘), Krj(oj)] = Ff,;_}'k']{k(s(z)(ﬂ, (J")

. . s — ) ) -9 . .
With Casimir Vi = Ki+ Ky — Kj. Continuous series

—
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From bdy algebra to tensor network

* To quantize geometry we need to find representations of
the boundary symmetry algebra

» States associated with bulk regions are representation state
of the boundary symmetry group.

* Space can be partitioned into finite 3D regions bounded by
surfaces.

* Gluing of two subregions are obtained by fusion of the
algebraic data along boundary spheres (links).

* Coarse graining is obtained by truncating the boundary
symmetry algebra into a finite dimensional algebra

— [
J
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Toward the full bdy symmetry

* In order to quantize gravity we need to answer the
question:What is the full bdy symmetry group of gravity ?

* Different components of the symmetry groups are revealed
by different gravity formulation.

* In the BF formulation of gravity

S = /B” A Fry(w), B! =x(ene)! + 71! Ne).
| :-;im}?ﬁ(tity

* We have new boundary charges generating an SL(2,C)”

(Br(0), Bkr(0")] = (Bronyk + )6 (o,0)

* What is the role of simplicity?
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Bulk simplicity
* To analyse simplicity we pick an internal unit normal vector
and we decompose the B field in Boost and spin components

Er = B”n'], Sr 1= *B”n']

* The pull-back of the simplicity constraint becomes ¢/n; = 0

> .
EI — f)/SI Vectorial area element

* The BF symplectic potential controls the commutations

Opr = / By 6w’
J Y

— ——

* We can also decompose the connection using

dyn’ :
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Bulk simplicity
* To analyse simplicity we pick an internal unit normal vector
and we decompose the B field in Boost and spin components

Er = B”n'], S7 = *B”n']

* The pull-back of the simplicity constraint becomes ¢/n; = 0

2 .
EI — f)/SI Vectorial area element

* The BF symplectic potential controls the commutations

Opr = / By 6w’
JY

e ———

* We can also decompose the connection using

don’ :
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Bulk simplicity

» After the decomposition the BF symplectic potential reads

Opr = / (K[(SE] == m(SnI) + (‘)BF((?Z)
J

* Bulk simplicity 77 =0

.And K[(sEl - Pab(s.(}(r,b + 25(\/5K)
—— “ - J

3 1 . .
canonical GR Gibbons—Hawking
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Boundary simplicity
* The boundary BF symplectic potential reads

1
Opp(S5) = / (E on' + —e /\(5(%’)
BrF(S) I\ 2 ¢
* It is the symplectic potential of a local Poincare algebra with:

* momenta B =

1 !

. . . . o Ay, L
* Pauli-Lubanski vector Wi =81 = gérKL(e” Aet)n
E E
* Angular momenta Lij==p; - =2p;,
* Total angular momenta By, = Eny — Eyng + S Aey

(Wi, Wyl = ety W p" (Wi, ps] =0

—— ———

Er,E;| = By
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Boundary simplicity

* This geometrical Poincare algebra has Casimirs

p2 — 72 W? = det(q) = v%i(j + 1)

— Discreetness of area element P

« Simplicity C;=E;—W; =0

* Geometrically X7 = S; xLi

* The usual gravity limit corresponds to a massless limit
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Boundary simplicity

* This geometrical Poincare algebra has Casimirs
W2 = det(q)

— Discreetness of the area element
* Simplicity constraint is preserved by the Lorentz generators

Corresponds to a symmetry breaking

SL(2,C) x R* — SL(2,C)

Which preserves Lorentz symmetry unlike sL(2,C) - sU(2)
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Boundary simplicity
* The total angular moment is not the only Dirac
observables commuting with the simplicity constraints

The tangential metric is also a good Dirac observable

It satisfy a local SL(2,R) algebra

[(]ub: (](!n’.] = =7 ((](.'.(!F-bn’. + Qbc€ad + Gad€be + qbrifru')

Its representation belong to the discrete series.
With Casimir  det(q) =+%i(j +1)
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Question Summary

* What are the discrete symmetries controlling non-
commutativity ? Do they have a continuum analog!?

Yes they do. It is the boundary symmetry algebra.

* What are the fundamental degrees of freedom of space!?

We have proposed that these are representation states of the

boundary symmetry symmetries. That space can be understood
algebraically as the fusion of these states.

* Which component of the metric should be taken as
commutative or not when discretized !

Boundary symmetries
diff (.9) sl(2,IR) sl(2,R), s1(2,C)

normal connection | normal metric

tangential metric | tangential bivector field
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Question Summary

* |s the discrete area in tension with Lorentz invariance!

No. No more that the presence of discrete spin is in tension with
Lorentz symmetry. The discrete area element appears both as a
Casimir of the tangential SL(2,R) and as the spin of the elemental
Poincare algebra.The simplicity constraint realizes the symmetry
braking pattern Poincare — Lorentz, not Lorentz = Rotation.

* What role is played by the Immirzi parameter ?

A role similar to the one played by the ) parameter in Yang-mills. It
labels different representation of the boundary symmetry group.
It appears as the mass of the elemental Poincare.
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More Questions

* Can we understand matter as a geometrical defect ?

* What is the relation between the material Poincare algebra
and the elemental one ?

* Do we have the full boundary symmetry group ?

* Can we achieve a quantization of the boundary
symmetry algebra without resorting to discretization ?

* How do we go from entangling spheres to evolving
boundaries ?
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