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Y

&N A generic optimization problem is written

b
7/ minimize  f(F)
V over reR"

such that r,e Z icZc{l...., n} (1)
. glr)y<0 je7J
hi#) =0 keKX

: where J={1.... | 7|} and K={1.....|K]|}.

4 1 Reference material

—

Q The material below is a synthesis of our first-hand experiences with various solvers and problems. Our
reference for optimization is the book |9] by Nocedal and Wright (copy here http://fourier.eng.hmc.edu/
el76/lectures/NumericalOptimization.pdf), and an excellent reference for conver optimization is the
book |2] by Boyd, available on Gitllub. For the practical aspects, the MOSEK modeling cookbook [1] is
excellent; we cite the Release 3.2.1 available on GitHub.

LR

o T Those books have been written at the turn of the century, but the theory has not changed much; machine

Pirsa: 20030032 Page 2/54




Activities Document Viewer *

+%

1Reference ... 1
» 2 Definitions 1
E » 3 Approaches 3
— ibliography 7
1)
|
>
Lo
w
o
LR
LR}
e BEr M

Pirsa: 20030032

Mar 11 1236 e

Opinlonated survey of (non)convex optimization tools(and related topics)
Notes, pdf

1 Reference material

The material below is a synthesis of our first-hand experiences with various solvers and problems. Our
reference for optimization is the book 9] by Nocedal and Wright (copy here http://fourier.eng.hme . edu/
el76/lectures/NumericalOptimization, pdf), and an excellent reference for conver optimization is the
book |2] by Boyd, available on GitHub. For the practical aspects, the MOSEK modeling cookbook |1] is

excellent; we cite the Release 3.2.1 available on GitHub.

Those books have been written at the turn of the century, but the theory has not changed much; machine
learning has simply spurred interest in first order methods due to the size of the models.

2 Definitions

2.1 Number of objectives X

An optimization problem without an objective is a satisfiability problem or feasibility problem.

When numerical errors are present, we can reformulate the feasibility problem

Find re "

such that @ € el {l,..., n} (2)
@B =0 j=1,....J B
h (=0 k [ [
as the minimization problem
minimize s
over
such that teZC{l,...,n} (3)

; i=1,...,d
sEhy () se=0 k=1,... K

s0 that there is always a feasible solution with s big enough. This is especially helpful for convex problems (more on that later).
Then “solver returns infeasible™ means that the problem formulation is not numerically stable; otherwise a solution with s < 0
is feasible and s > 0 deseribes infeasibility
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1 Reference ... 1 Vhen several o l_](‘(‘ AVeSs are |]l'(‘.‘ﬁ'(‘l] . We are H]](‘}lill]g ol multio ]_](‘(‘ Ave ()l] 1n1Zation.
* 2 Definitions 1
2.1 Mumbe... 1 The simplest approach is to minimize a linear combination of objectives
2.2Typeol... 2
23Typeof... 2 Sy =a 1) + apfald)
245caleo... 3
5Proble... 3 . ’ . o X . . .
2.5 Proble for various values of ey, o, this is part of the scalariztion approaches. To organize the results, plot the Pareto front. We
# b 3 Approaches 3 @ A . . . 5 . P . . . . o .
also had success with genetic algorithms which maintain good diversity in the population of solutions (for example NSGA-IL [4]).
Bibliography 7 '
o 2.2 Type of objective
Fu The simplest type of objective function is linear:

g J@) =" i4d (4)

(Strictly speaking, it is affine for d # 0 although this subtle point is often lost. We use linear for both.)
Otherwise, the problem is said to have nonlinear constraints.

An objective function is conver when |2, Chap., 2 and 3|

Jlevr 4+ (L= a)ra) s af(F)+ (1 —a) f(F2), ave [0, 1]. (5)

Polynomial objective functions have the form

!(f]' =¥+ T‘ ."'-’Ju-rln U T‘ Figiali Fig b (”}
e e

T P Sty

r 4
R Y
N
e This implies that any local minimum of [ is also a global minimum |2, 4.2.2|.
o

Sometimes, objective functions are not known in closed form: it can be obtained from an integration, solving
a differential equation, solving an inner optimization problem, even running an experiment, T'he computation
of f(F) may even be noisy. In those cases, the devivatives Of /&y, 9% f /drida; may not be available, and
cannot be computed by finite difference schemes: the solving algorithm needs to be devivative-free |9, Chap,
9|,
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A problem has conver constraints when all inequality constraints g; are convex (5), all equality constraints
hy ave linear (1),

Constraints can also be polynomial as in (6).

A semidefinite programaming (SDP) constraint is constructed as [ollows. Given fixed symmelric matrices
and {A;},, we write the affine combination y =~ 3" A,r; using the optimization variables (the signs are
somewhat arbitrary for now). We then impose that y is a semidefinite positive matrix, i.e. that its eigenvalues

)

]

eig(y) are all nonnegative |2, 4.6.2]. Semidefinite constraints are quite expressive (two examples: [10]
and relatively efficient to compute.

2.4 Scale of problems
Y

This relates to the number of variables and constraints, and will guide algorithm selection.

Small problems include a handful of variables and constraiuts (say 1 —10). They can sometimes be solved
by exact/algebraic methods,

Medium-scale problems nsually involve less than a thousand variables and constraints: for those, second

order derivative information (the Hessian) can be stored in memory using a dense matrix.

Large-scale problems are such that second-order derivative information is too expensive to be stored in
memory (in our experience, algorithms are more memory bound than CPU bound). Algorithms use the
structure of the problem to reduce computational reqguirements: for example sparsily, approximating second
order information or even not using second-order information at all (at the price of convergence speed).

2.5 Problem types

Objective type Constraint type Integrality Problem type

Linear Linear Linear program (LP)

Linear Linear T4+ Mixed integer linear program (MILP)
Linear Semidefinite Semidefinite program (SDP)

Convex Convex Convex program

Polynomial Polynomial Polynomial optimization problem (POP)
Nonlinear None Unconstrained optimization problem
Nonlinear Bounds Bounded optimization problem

Noanlinaar Nnlinaar T £ Mivad infamor nonlinaar neaaran (NVITNT P
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3.1 Problems specified by user-defined functions

[u this approach, algorithms start with a user-given point ¥y, gather information about the objective and
constraints around 1, compute a first iterate ;| that respects the constraints and such that f(r) < f(ry).
repeat the procedure to obtain 72, ete. .., until one of the stopping criteria of the algorithm is achieved
(for vx}uilpltg the improvement f(r, 41) — f(r;) 1s small, the norm of the estimated gradient is below some
tolerance, or the step size |i.f‘,-4 1 .r",|E is too small).

The main difference here is between convex and nonconvex programs. If the problem is not convex, there is
no guarantee that the returned solution is globally optimal, or even feasible, while convex programs provide
such certainty.

{Several heuristics are available for nonconvex programs. but they are outside the scope of this survey).
3.1.1 Derivative-free algorithms

Objective type Constraint type  Integrality  Problem type
e Nonlinear None Unconstrained optimization problem
Nonlinear Bounds Bounded optimization problem

The algorithms below do not require gradient/Hessian information, see |9, Chap. 9]

The Nelder-Mead or amoeba method is common for unconstrained problems: fminsearch in Matlab stan-
dard toolbox; available in the https://github.com/JuliaNLSolvers/Optim. j1 Julia toolbox. It works on
functions that are not differentiable. but can converge to non-optimal points. It is best used on problems
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B 2.1 Numbe... 1 Note that LP, SDP are convex programs. Integrality constraints appear mostly in MILP, generic MINLP
—— 2.2Typeof... 2 are an active area of research.
23Typeof... 2
@ 2.48caleo... 3
2.5pProble... 3 3 AI)I)I‘OaCheS
# * 3Approaches 3
. ~ 3.1Proble... 3
310e.. 4 . _ o . . .
12 D: . 3.1 Problems specified by user-defined functions
1) o ’
1= 3.2Proble.. 4 . . . . . i L . R
b 33Usinga... § In this approach, algorithms start with a user-given point ry, gather information about the objective and
5T » 345pecial... 6 constraints around #y, compute a first iterate .y that respects the constraints and such that f(rF) < f(/7),
Bibliography 7 repeat. the procedure to obtain 22, ete.. ., until one of the stopping criteria of the algorithm is achieved
» (for example, the improvement f(#; 1) — f(r) is small, the norm of the estimated gradient is below some
é tolerance, or the step size || ¥ 41 — 74| is too small).
&N The main difference here is between convex and nonconvex programs. If the problem is not convex, there is
b | no guarantee that the returned solution is globally optimal, or even feasible, while convex programs provide
such certainty.
-, r 4
W
@ 3
A
(Several heuristics are available for nonconvex programs, but they are outside the scope of this survey).
3.1.1 Derivative-free algorithms
LR
ee I SICEE Objective type Constraint type Integrality Problem type

AT 1 154 TT I 1 IR N 11
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approximate the second-order derivative information (Hessian). It is provided by the Optimization Toolbox
in MATLAB through the quasi-newton algorithm of the function fminune; in Julia, see the https://
github.com/JulialLSolvers/Optim. j1 toolbox. In Julia, a limited memory version (LBIFGS) is provided
for large scale problems, where the Hessian matrix is approximated using the last s iterates, reducing

Memory usce.

For constrained problems, interior-point methods try to move in a central path at a certain distance of

the constraints, In the MATLAB Optimization Toolbox, fmincon has an implementation of the interior
point method; the Tpopt solver has Julia bindings: https://github. com/JuliaOpt/Ipopt.jl. MATLAR
additionally has an sequential quadratic programming algorithm that can works more precisely for medinm
scale problems (instead of following a central path, it actively searches for inequality constraints that are be

salurated).
The Knitro nonlinear solver is state-of-the-art but academic licenses are not free.

Final note: if the Julia code is written with generic types in mind, the gradients can be antomatically
computed by forward autodifferentiation.

3.2 Problems given in a canonical foym
Some problem types have canonical forms. For example, linear programs (LP) have the (primal) form:
minimize &7
over re R
A7 =0

=0

(8)
such that .

L

172.8% ~ [e]
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I'he solver Gurobr https: //www. gurobi. com/ 1s exce - for linear and mixed-integer linear programming,
though MOSEK is close (and MOSEK supports SDPs).

For convex problems given in canonical forms, the MOSER https://www.mosek.com/ solver represents
the state of the art. It has a free academic license. For extended precision arithmetic, use the SDPA
family http://sdpa.sourceforge.net/family. html., We did nol have great experiences with the SCS
5], sometimes recommended in Julia examples, but it seems to have
applications. Its code is particularly simple to follow though.

solver (https://github.com/cvxgrp/s

All these solvers interface with Matlab and Julia: for Julia, see in particular https://github. com/JuliaOpt.

3.3 Using a modeling framework

Writing a convex program in a canonical form (3)-(9) can be tedious. Luckily, both MATLAB and Julia have
modeling frameworks that enable the use of standard syntax. Under the hood, the problems are transformed
in the canonical form and solved. We describe below the ditferent frameworks available. Some of them work
even [or nonconvex programs whose objective and constraints are given in a closed f{orm,

Still, modeling frameworks are not magical: they often result in canonical formulations that are more complex
than necessary, with obvious redundancies (some frameworks, for example, do not substitute simple equality
constraints such as ) = a3).

3.3.1 YALMIP (Matlab)

YALMIP is the one of the oldest framework in existence. It's based on MATLAB. though it runs on the
open source clone Qctave ( https: //www.gnu.org/software/octave/ ).

The core of YALMIP is convex optimization over real-valued linear or semidefinite programs, and that core
is stable, and interfaces with myriads of solvers.

Beyond convex programming, YALMIP has support for nonconvex problems, complex variables, dualization,
global optimization, polynomial optimization, ... but often it is not possible to use two extensions at the
same time (for example, getting the dual variable corresponding to a complex SDP constraint). We observed
that YALMIP performs the translation of the problem to its canonical form quite mechanically, without
applying obvious eliminations.

YALMIP has amazing documentation.

LU B ] U YA "SNNE . W, PR P B |

Lt
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# * 3Approaches 3
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itipe.. 4
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+ 33Usinga... 5

5
5
]
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[}
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v 2Definitions 1 programiing: convex sets of importance can be defined in user functions and reused.
1
2
2
2

g}

> IITYA.,
332CV...
3.3.3 ...
é 334C0...
b 3.4 5pecial...

Bibliography

The version 3 has critical bugs, but the version 2.2 is rock solid. It supports complex variables, including
getting the dual variables of complex constraints. The documentation is great. CVX supports a limited
number of solvers, compared to YALMIP, but it supports MOSEK, which is often all that is needed.

CVX performs model translation better than YALMIP, and applies simple variable substitutions.

3.3.3 JuMP (Julia)

JuMP (https://github.com/Julialpt/JuMpP. i1 ) looks like the Julia equivalent of YALMIP. It interfaces
myriads of solvers, offers nonconvex modeling and a quantity of extensions. It is actively used in research. It

does not seem to be as versatile as YALMIP yet, and the documentation is sometimes lacking, in particular

e g
v

e for its extensions. Of course YALMIP has nearly two decades of existence.
A

3.3.4 Convex.jl (Julia)

On the other hand, Convex.jl { https://github.com/Julialpt/Convex. j1 ) is a Julia implementation of
Disciplined Convex Programming, and has a limited scope compared to JuMP. In our limited experience,
it seems more robust and ready to tackle medium or large scale optimization problems; it supports a large
variety of solvers. Its documentation is pretty great.

3.4 Special cases
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| PANDA

]http:/fcomapt.ifi.uni—heidelberg.d@fsoftware/PAHDA/

[Iiilmr‘\‘

J

Julia has bindings to many libraries: https://juliapelyhedra.github.io/ under a common interface,
which we haven't tried.

We also used rational LP solvers, which can be very efficient for medium scale problems:

Software

Link

Platform

QSopt_ex

https://www.math.uwaterloo.ca/ bico/qsopt/ex/index.html | Binary

SoPlex

https://soplex.zib.de/index.php

Binary

GLPK (exact mode) [https://www.gnu.org/sof tware/glpk/

Julia, Matlab

For polynomial problems, the elimination of quantifiers can be done using the Cylindrical Algebraic Decom-
position |3], implemented in Mathematica.

3.4.2 Verified bounds

Semidefinite programs are often too expensive to be solved exactly, apart from small examples |7]. Never

theless certified bounds canjbe obtained using the VSDP package in Matlab |S].

3.4.3 Discrete/combinatorial optimization

When all variables are discrete and bounded, ideally all @, € {0, 1}, consider using a SAT solver. We recom-

mend MiniSat, http://minisat.se/. Beyond that. the Z3 solver https://github. com/Z3Prover/z3.

i

L
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3.4 Special cases

3.4.1 Exact arithmetic

To solve linear programs, including those with multiple objectives, the feasible set can be manipulated using
Fourier-Motzkin elimination |12]. We employed succesfully, for combinatorial problems.

Software Link Platform
PORTA http://porta.zib.de/ Binary
PANDA http://comopt.ifi.uni-heidelberg.de/software/PANDA/ Binary

Julia has bindings to many libraries: https://juliapolyhedra.github.io/ under a common interface,
which we haven't tried.

We also used rational LP solvers, which can be very efficient for medium scale problems:

Software Link Platform
QSopt.ex https://www.math.uwaterloo.ca/ bico/qsopt/ex/index.html | Binary
SoPlex https://soplex.zib.de/index.php Binary
GLPK (exact mode) [https://www.gnu.org/software/glpk/ Julia. Matlab

For polynomial problems, the elimination of quantifiers can be done using the Cylindrical Algebraic Decom-
position |3], implemented in Mathematica,

3.4.2 Verified bounds

Semidefinite programs are often too expensive to be solved exactly, apart from small examples |7]. Never
theless certified bounds can be obtained using the VSDP package in Matlah [8].

3.4.3 Discrete/combinatorial optimization

When all variables are discrete and bounded., ideally all x,; ¢ {0, 1}, consider using a SAT solver. We recom-
mend MiniSat, http://minisat.se/. Beyond that. the Z3 solver https://github. com/Z3Prover/z3.
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In [1]: using Convex
’IJ using GLPK
- using Printf

Introduction to convex optimization

minimize  fi(x)
X

é over e R

)< jed

lh x)= '
l;;' =0 kel
S

where all f, g, and hy are convex; for _;’(._\'I

r

flax, + 01 —a)Xs) < af(X))+ (1 = a) f(Xa), ae |0 1]

On left, an example of a convex functlon Is glven below, where we plot the line segment o f( X+l =a) f{:\:; ) In dark blue. On the right, an example of
a nonconvex functlon

Convax Nonconvex

In the same splirlt, convex sets Include the line segment between any two of thelr points

(&/j

while corvex sets do not
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[]: using Convex
using GLPK
using Printf

1 Introduction to convex optimization

minimize f(¥)

over Y& R"

gi(x) <0 jeJ M
I (¥) =0 ke Kk
where all f, g; and /iy are convex; for f(¥):
flaxy + (1 —w)x2) < af(¥) + (1 -a)f(2), a€(01] 2)

On left, an example of a convex function is given below, where we plot the line segment

1
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h using Printf
1=

1 Introduction to convex optimization

minimize f(x)
e P 1]
é over X 2[\' o (1)
gi(¥) <0 jeJd
&N (%) =0 kek
N

where all f, ¢; and Ity are convex; for f(X):

Flady + (1 - 0)%) < af (@) + (1-a)f(B), a0l 2)

On left, an example of a convex function is given below, where we plot the line segment
af(¥) + (1 —«)f(x2) in dark blue. On the right, an example of a nonconvex function.

r 4
R
\ "4
e . Convex A Monconvex
A ; |

Jidy) b
[ | e
EJ > _ »
r ro
e
e
aee E [ [

Pirsa: 20030032 Page 16/54



Activities Document Viewer *

b Linear opti...

2
!E= » Duality 3

Pirsa: 20030032

Mar 11 1240 e

Step1_ConvexProgramming.pdf

minimize f(X)
over Y e R"

G(¥) <0 jeJg M
h(x¥) =0 kek
where all f, ¢; and ;. are convex; for f(X):
Flaxy + (1 —a)@) < af(¥)) + (1 —a)f(X2), x € (0,1 (2)

On left, an example of a convex function is given below, where we plot the line segment
af(Xy) + (1 — &) f(x7) in dark blue. On the right, an example of a nonconvex function.

Convex Nonconvex

fliy)

Fiia) 1

v

ConvexFun.svg

In the same spirit, convex sets include the line segment between any two of their points:

¥

Lt

172.8% ~ [®!

Page 17/54



Activities Document Viewer + Mar 11 12:42 e 3

Step1_ConvexProgramming.pdf Q

~ Introduction ... 1 " ’, > ]
v Linear opti... 2
b Duality 3

@ ConvexFun.svg

v

-‘. In the same spirit, convex sets include the line segment between any two of their points:
.

j1 y

Y

= F 4

b4

e while convex sets do not:
&

X
Convex programs (1) have one crucial property: any local minimum is also a global mini-
mum. In particular, this guarantees that (non pathological) optimization algorithms always find
the global minimum up to numerical precision.
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» Convex programs (1) have one crucial property: any local minimum is also a global mini-
mum. In particular, this guarantees that (non pathological) optimization algorithms always find
é the global minimum up to numerical precision.
[\ %] 1.1 Linear optimization
P

The simplest kind of convex programs is a linear program, where the objective and all constraints
are represented by linear functions such as (technically, these are affine functions):

f(R) =c"¥+d (3)

=, r 4
w
@
@ p* = minimize 7+ 2x2 — X3
over Y& R? 1
e X1,X2,x3 >0 (
+x+yy=1
a We now solve that problem using the Convex jl optimization toolbox.
e []: x = Variable(3)
constraints [x >= 0, sum(x) 1]

objective = x[1] + 2+x[2] - x[3]

preblem = Convex.minimize(objective, constraints)

solve!(problem, GLPK.Optimizer(msg_lev=GLPK.MSG_ALL ))

@printf ("\n")

@orintf("Optimal cbiective o = ’f\n". problem.obtval)
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| Primalc... )
b Duality 3 fL'?} — E’l ? 4 d (3)
@ p* = minimize ¥+ 2x2 — X3
( over Y& R’
= (4)

X1,X2,x3 >0
X1+ x+x3=1

1
= We now solve that problem using the Convex jl optimization toolbox.
» []: x = Variable(3)
constraints [x > 0, sum(x) 1]
P objective = x[1] + 2#x[2] - x[3]
problem = Convex.minimize(objective, constraints)
[\ | solve!(problem, GLPK.Optimizer(msg_lev=GLPK.MSG_ALL ))
4 Qpr intf ("\n")

@px LILLI(“DpLimal objective p Z0A\n", problem Gpt'val)

L7 "

@printf ("Optimal point x = Js\n", x.value)

1.1.1 Primal canonical form of a linear program

The standard form of a linear program is as follows, with @€ R", A € R"*" and b € R".

=, r 4

W

e minimize ¢'¥
¥e R"
A — b

a ,-jn =h
¥=0

over

The problem is fully specified by the matrix A and the vectors b and ¢.

Lecture exercice Complete the program data below to solve (4).

[]: using Convex
I using GLPK
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are represented by linear functions such as (technically, these are affine functions):

| Primalc... _
b Duality 3 fL'?} = E’l ? - d (3)
@ p* = minimize ¥+ 2x2 — X3
( over Y& R’
= (4)

X1,X2,x3 >0
X1+x+x=1

1
= We now solve that problem using the Convex jl optimization toolbox.
» []: x = Variable(3)
constraints [x > 0, sum(x) 1]
P objective = x[1] + 2#x[2] - x[3]
problem = Convex.minimize(objective, constraints)
[\ | solve!(problem, GLPK.Optimizer(msg_lev=GLPK.MSG_ALL ))
4 Qpr intf ("\n")

@px LILLI(“DpLimal objective p Z0A\n", problem Gpt'val)

L7 "

@printf ("Optimal point ¥ = Js\n", x.value)

1.1.1 Primal canonical form of a linear program

The standard form of a linear program is as follows, with ¢ € R", A € R"*" and b € R".

=, r 4

W

e minimize ¢'¥
¥e R"
A — b

a ,-jn =h
¥=0

over

The problem is fully specified by the matrix A and the vectors b and ¢.

Lecture exercice Complete the program data below to solve (4).

[]: using Convex
I using GLPK

Pirsa: 20030032 Page 22/54




Activities

©) Firefox Web Browser *

[ 0 ) localhost:agas/note
Z Jupyter
Flle  Edit

B o+ o

In [2]

Pirsa: 20030032

Mar 11 12
Step1_ConvexProgramming - Jupyter Notebook - Mozllla Firefox

Step1_ConvexProgran p2_CausalStructurs

class-2020-03-11/step1_ConvexProgramming.ipynb LN 4 o
Step1_ConvexProgramming {unsaved changes) .@O Logout
View  Insert  Cell  Kemel  Widgets Help Tru | dutia 1.210 ©

moA + MAun B C W akdown -

Linear optimization

The simpleat kind of convex programs Is a finear program, where the objective and all constraints are represented by linear functions such as (technically,
these are affine functlons):
- T =
fix)=¢c x+d
Pt o= minimize x4 2x) — X3
Te R

X, X303 >0

over

X+ X+

We now solve that problem using the Convex || optimization toolbox

¥ = Variable(3)

constraints = [x == @, sum(x) == 1]

objective = x[1] + 2+*x[2] - x[3]

problem = Convex.minimize(objective, constraints)
solvel{problem, GLPK.Optimizer(msq lev=GLPK.MSG ALL ))
@printf("yn") I

@printf{"Optimal objective p
@printt{"Optimal point X

fin", problem.optval)
%s\n", x.value)

GLPK Simplex Optimizer, vd.G64
5 rows, 4 columns, 10 non-zeros

0: obj = ©.000000000e+00 inf =  1.000e+80 (1)
2: obj = 0.000000000e+00 inf =  0.000e+00 (0)
* 4: obj = -1.000000000e+00 inf = 0.000e+00 (0)

OPTIMAL LP SOLUTION FOUND

Optimal objective p = -1.000000

optimal point x = [0.8; 8.0; 1.@]

Primal canonical form of a linear program

The standard form of a linear program Is as follows, with ¢ € R", A € R™" and b € R"™.

e . =T=
mimmize ¢ x

over x € R
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X+ X2+ Xy =

We now solve that problem using the Convex || optimization toolbox

¥ = Variable(3)

constraints = [x == 8, sum({x) == 1]

objective = x[1] + 2*x[2] - x[3]

problem = Convex.minimize(objective, constraints)
solvel(problem, GLPK.Optimizer(msg lev=GLPK.MSG ALL ))

@printt{"sn")
iprintf{"Optimal objective p fin", problem.optval)
@printf("Optimal point X %syn”, x.value)

GLPK Simplex Optimizer, vd.64
5 rows, 4 columns, 10 non-zeros

0: obj = 0.000000000e+00 inf = 1.080e+00 (1)
2: obj =  0.,000000000e+00 inf =  0.000e+00 (0)
’ 4: obj = -1.000008000e+088 inf = 0.000e+08 (0)

OPTIMAL LP SOLUTION FOUND
Optimal objective p = -1.000000

Optimal point x = [0.8; B.8; 1.0]
Primal canonlcal form of a linear program

The standard Funnlof a linear program Is as follows, with ¢ € ", A € R"™™" andh € R".

minimize ¢
over x € R"

ﬂ; =h

x=0
The problem s fully specified by the matrix A and the vectars b and ¢.
Lecture exercice
Complete the program data below to solve ( 771
using Convex

[1, 1, 1] is a 10 vector, [1; 1; 1] is a column matrix, [1 1 1] is a row matrix
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. Optimal objective p = -1.000000
Optimal point x = [0.0; 8.0; 1.0]
'IJ
- Primal canonlcal form of a linear program
The standard form of a linear program Is as follows, with ¢ € R", A € R™" anda e R".
>
T =T
mimmmize ¢ x
> over x € R"
é A% = b
x>0
s The problem Is fully specified by the matrix A and the vectnr:?] and ¢
p Lecture exercice
R
v Complete the program data below to solve ("7
In [ ]: using Convex
using GLPK
“ | (1, 1, 1] is a 1D vector, [1; 1; 1] is a column matrix, [1 1 1] 1s a row matrix
¥ = Variable(3)
©
A =[]
b =
constraints = [A*x == b, x >= 0]
e objective = dot{c, x)
problem = Convex.minimize(objective, constraints)
solvel{problem, GLPK.Optimizer(msg lev=GLPK.MSG ALL))
printf{"\n")
4 @printf(optimal objective p “fyn", problem.optval)
fr. 5% @printf{"optimal point % syn', x,.value)
Duality
We remind the primal canonical form ("1
p* = minimize R Ax=b xz0

&R

and Introduce the notatlon

® avarlable with a # superscript s an optimal solutlon {as In p* Is the minimum of the LP),
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Duality
>
We remind the primal canonical form (777):
. ~T= == -
p* = minimize ¢ X, AX = b, x>0,
é FeR"
5 and Introduce the notation N
3 ® avarlable with a * superscript Is an optimal solution (as In p* Is the minimum of the LP),
2 ® a varlable with a » superscript Is a feasible solution (as In X" satisfles the constraints),
WV
with the conventions
. ® p* = +0 If the problem Is Infeasible,
® p* s finite If the problem has an optimal (thus feaslble) solution,
I
@ e p* = —oo if the problem is unbounded, as there are feasible solutions with ¢ X — —oo.
e We introduce the Lagrange multipliers ¥ € R™ corresponding to the constraint AX = b, and the Lagrange multipliers s € R" corresponding to the
constraint X > O, with § > () as they correspond to an Inequality constraint. The Lagranglan function Is:
- - ~T - ~ =T =
4 Lix,y.,8)=c¢c x+y (b— AX) -5 X.
[y
For any feasible X" and any (3.5 Ywith s > 0, we have
R . = - et Tt wT e
LGV, 3) =¢ x" +) (b= A = G)'F <¢' 3
——
=0
L Let us now minimize L(X, E §) over X:
LR}
T
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Primalc... 2 with the conventions
3
- s p*' = +ooif the problem is infeasible,
Recover,., 4 oo i . .
e p*is finite if the problem has an optimal (thus feasible) solution,
e p* = —coif the problem is unbounded, as there are feasible solutions with ¢ ¥ — —oo.
We introduce the Lagdange multipliers if € R" corresponding to the constraint AX = b, and the
Lagrange multipliers 5 € R" corresponding to the constraint ¥ > 0, with § > 0 as they correspond
to an inequality constraint. The Lagrangian function is:
L(Z,i,5) =c"x+i' (b A¥) —5'%. (6)
For any feasible ¥* and any (y*,5*) with s > 0, we have
L(X 75 =¢'x" + (7)) (b—AX") —(3") "% <¢&'x (7)
———
0
Let us now minimize L(¥, ¥/, 5) over "
_, ey : b'y, ¢ A'y-5=0,
Q,5) =min¥' (- A'F-5) +b'y = i X (8)
7 —o00, otherwise.
Note that for every (1/,5) (with s > 0 by definition), the value g(i,5) is a lower bound for p*
by (7).
In (8), only the first case (¢ — A7 —§ = 0) leads to a nontrivial upper bound. We now maxi-
mize over such (v, §) to get the best lower bound.
3
e M
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1.2.1 Dual canonical form of a linear program

We obtain:

d* = maximize b'y
over € R",§e8" 9)
C-Alj=3 '
§>0

which is the dual problem. Through the Lagrangian mechanism, we hnI\.'e d* < p* which is
weak duality.

We have the cases, for the dual problem: - d* = +e0, dual unbounded, thus +ec0 < p* and the
primal problem is infeasible, - d* is finite, the dual is feasible, the primal problem can either be
feasible or infeasible (but not unbounded), - d* = —o9, the dual problem is infeasible.

For linear programs only, when d* is finite, then p* = d*; when p* is finite, also d* = p* (this is
called strong duality).

Lecture exercice Fill the problem data below to solve the dual of (4).
using Convex

using GLPK

y = Variable(1)

s = Variable(3)
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E * Linear opti... 2 c—A Yy =>s
Jiee Primalc... 2 §>0
— * Duality 3 o
@ Dualca... 4 which is the dual problem. Through the Lagrangian mechanism, we have d* < p* which is
Recover... 4 3 >
weak duality.
We have the cases, for the dual problem: - d* = +00, dual unbounded, thus +ec0 < p* and the
L | primal problem is infeasible, - d* is finite, the dual is feasible, the primal problem can either be
feasible or infeasible (but not unbounded), - d* = —oo, the dual problem is infeasible.
1 s . e -
s For linear programs only, when d* is finite, then p* = d*; when p* is finite, also d* = p* (this is
called strong duality).
5
- Lecture exercice Fill the problem data below to solve the dual of (4).
é []: using Convex
5N using GLPK
" | y = Variable(1)

Variable(3)
= [
= [
]
constraints = [s >= 0, s == ¢ - transpose(A)*y]
objective = dot(b, y)

w

o= 0

X r 4

w

O

@ problem = Convex.maximize(objective, constraints)

e solve! (problem, GLPK.Optimizer(msg_lev=GLPK.MSG_ALL))
@printf ("\n")

a @printf("Optimal objective d = f\n", problem.optval)

—a @printf ("Optimal point y Zs\n", y.value)

@prantf ("Optimal point s = %s\n", s.value)l

1.2.2 Recovering dual variables using Convex.jl

Most convex solvers solve the primal and the dual problem at the same time, as doing so lead to
hetter robusiness (the nrimal-dual ean n* — d* is then a measure of convereence)
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T Optimal point y = -1.0
| Optimal point s = [2.0; 3.0; 0.0]
"
>

Recovering dual variables using Convex.jl

e ost convex solvers solve the primal and the dual problem at the same time, as doing so lead to betler robustness (the primal-dual gap p* — d* is then a
= measure of convergence).
sg Remember the primal problem:
e T . - =
p* = minimize ¢ X, AX = b, x>0,
D xeR"
- -
b o and realize that any feasible X provides an objective p* that is an upper bound on the true minimum by definition: p* < p*.
. The same happens for the dual problem: any feasible palr (T" K ) provides an objective d” that Is a lower bound on the true dual maximum.
@ Thus if we have a primal feasible solution X" and a dual feasible solution (¥, 5 ), we sandwich the true solution d* = p*
d" <d* =p* <p'
- -
e Linear programming solvers try to return a feaslble solution palr for both the primal and dual, with primal objective p~ and dual objective ¢ . It would be
tempting to imagine that the true solution lies in the internal [d , p" |. However the primal and dual solutions are usually sfightly infeasible due to numerical
a errors, and the relation (777) only holds approximately. Worse, it's difficult to assess the impact of such numerical errors just by looking at the problem
data.
@ Below, we provide the primal problem to Convex.|l, and recover the dual variables from the solution. Compare and contrast with the dual formulation above.
In [ ]: using Convex
using GLPK
X = Variable(3)
LR
“es c =[]
LR}
A=1]
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= Linear programming solvers try to return a feaslble solution palr for both the primal and dual, with primal objective p~ and dual objective d . It would be

5 tempting to imagine that the true solution lies in the internal [d . p"]. However the primal and dual solutions are usually sfightly infeasible due to numerical

errors, and the relation (7""7) only holds approximately. Worse, it's difficult to assess the impact of such numerical errors just by looking at the problem

= data.
g3

- Below, we provide the primal problem to Convex.|l, and recover the dual variables from the solution. Compare and contrast with the dual formulation above.

In [ ]: dsing Convex
using GLPK
P X = Variable(3)
A ¢ =[]
A =[]
. b =[]
constraints = [A*x == b, x >= 0]
objective = dot(c, x)
@ problem = Convex.minimize(objective, constraints)
solve!(problem, GLPK.Optimizer(msg lev=GLPK.MSG ALL ))
@printf("\n")
e @printf("Optimal objective d = %f\n", problem.optval)
@printf("optimal point X o= %s5\n", x.value)
@printf("Dual variable 1  %s\n", problem.constraints[1].dual)
3 @printf("Dual variable 2 %s\n", problem.constraints[2].dual)
s

In [ ]:
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I
= Application to causal structure discovery
See the paper aboul the lechnique. Read In particular Section |, section || can be skimmed, as well as II.A. The main idea can be understood by reading
e I11.B; we'll use Example 1 In our description below; read the pen-and-paper proof in Example 1, we'll formulate it as a linear program.
5N Optional, read I11.C, skimming through the technical definitions, pay attention to Example 4. The use of linear programming is detailed in Section IV,
s particularly IV.B. Skip the rest. Appendix A provides the data we need.

An example of causal structure

Conslder the following causal structure:

C B
.,

where we observe the variables A, B and C that take the values a, b, ¢ = (), | . We observe the following correlations:

112, fa=b=c,

0, otherwise.

Papc(a, b, ¢c) = {

We try to understand whether this perfectly correlated distribution can arise In a causal structure where the variables A, B and C only depend on
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’IJ _. I11.B; we'll use Example 1 In our description below; read the pen-and-paper proof In Example 1, we'll formulate It as a linear program.

Optional, read I11.C, skimming through the technical definitions, pay altention to Example 4. The use of linear programming is detailed in Section IV,

- particularly 1V.B. Skip the rest. Appendix A provides the data we need.
3 | An example of causal structure

|
Consider the following causal structure:

(2 B
>,

172, ifa=b=c,
0, otherwise.

Pypc(a, b.c) = {

We try to understand whether this perfectly correlated distribution can arise In a causal structure where the variables A, B and C only depend on
information that is shared with another party only.

% r 4

w

e [ where we observe the variables A, B and C that take the values @, b, ¢ = (), | . We observe the following correlations:
A

A causal model

Thus, there are unobserved variables X, Y, Z, with distributions Py (x), Py(y), Pz(=), such that the varlable A Is fully described by Py xy (a|x. y),

Pirsa: 20030032 Page 41/54



Actlvities €) Firefox Web Browser = Mar 11 13:29 e

Step2_CausalStructures - Jupyter Notebook - Mozllla Firefox

Home Page - Select or ¢/ X cli 020-03-11/ X | & Step1_ConvexProgramin X Step2_CausalStructure

[ O @ localhost:asss/notebooks/class-2020-03-1 usalstructures.ipynb 133% v © o L N @

@ _ Jupyter Step2_CausalStructures (autosaved op  Logou
File Edit View Insert Cell Karnel Widgets Help rusted | Jullia 131 O
. = + 3 ca] B ~» Vb MRun W@ C MW Markdown M =
12, ifa=b=c
1) Papcla, be) = .
I e 0, otherwise.
- We try to understand whether this perlectly correlated distribution can arise in a causal structure where the variables A, B and C only depend on

information that Is shared with another party only.

A causal model

Thus, there are unobserved variables X, ¥, Z, with distributions Py (x), Py (¥), Pz(z), such that the variable A is fully described by P xy (alx, y),
the variable B by Ppyz(b|y, ) and the variable C by Prx z(c|x, 2), and we have

Pypcla, b, e) = Z Py(xX)Py () Pz(2)Payxy(alx, ¥) Ppyz(by, 2)Popx z (el x, 2).
Ky
Now, assume that the variables x, y, = are integers between () and N . Then, testing if our P4 g has a model of the form (77"7) would be a polynomial
feasibility problem (and a hard onel, already for N > 3). But we do not even know the type of the unobserved variables X, Y, Z (still, see
hitps://arxiv.org/abs/1709,00707 ).

Test using the "inflation technique” which maps to LP

We will use another method, amenable to linear programming. We will make a (numerical) proof by contradication. Assume that P4 g has a medel of the

form (777). Then, we can Imagine a varlation on that model, where we duplicate the varlable ¥, and wire the relations between the varlables a bit
differently.
As
aes / \\'_,
.ee X, Y,
1 1
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Test using the "inflation technique” which maps to LP

We will use another method, amenable to linear programming. We will make & (numerical) proof by contradication. Assume that P4 g has a model of the
form (77

é differently.

). Then, we can Imagine a varlation on that model, where we duplicate the variable Y, and wire the relations between the variables a bit

YN
¥

Cy By

~

Z

This is called an inflated scenario. There, we obtain the slightly different correlations:

€

(=

9, ANANA N
‘ Yo X Z Y,

Py (ax b)) = Z Py, (x )Py () Py (02) Py (20) Py x v (| x40 v2) Py vz By |y 20 Peyx, 2, (e | xg L 2p).

Xy

Note that, however, the marginal distribution of the inflated correlations

Pir = v Pioelar. b)) = v Py (X Pv (v YPe (zVPaav vilan xi v Peov # (e lxo 2
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‘ LP
X ¥ We will use another method, amenable to linear programming. We will make a
» (numerical) proof by contradication. Assume that P4 pe- has a model of the form
é + + (7"77). Then, we can imagine a variation on that model, where we duplicate the
variable ¥, and wire the relations between the variables a bit differently,
&N C i
Sy
A - . 4 | A
£ / \\
) - X Y ‘
scen15DAG.svg { {
C / By
the variables A, B and C that take the values a,b,c - r2

VANANVAN
1/2, ifﬂ = b = C, Y X, Z 17

0, otherwise.

Papc(a,b,c) =

This is called an inflated scenario. There, we cbtain the slightly ditferent
correlations:

1d whether this perfectly correlated distribution can

s A, B and C only depend on information that is sha Pume (@ bioe) = Y Px,(xDPy (0 Py (1) Pz, (50 Payyx, i (a2
::: .\]ll")'_‘;
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This is called an inflated scenario. There, we obtain the slightly different correlations:

Py,po (a2 by.c)) = Z Py (x)) Py, (YD) Py, (y2) Pz, (21) Payyx v (a2 | x 1. v2) Py vz (Br e 210 Pey iy z, (e xg

Xiyy¥as
Note that, however, the marginal distribution of the Inflated correlations

Pre, = E Pa,pc (a2, by, ¢)) = Z Px, () Py, (32) Pz, (20 Pay x v (@21, y2) Poy x, 2, (e X0, 2)

] x|z
has the same form as the marginal distribution of the original scenario

Pic(a, c) = Z Papcla, b, c) = Z Py (x)Py(W)Pz(2)Paxy(alx, y) Pox z(c|x, 2).
b

Yyz
We thus have

Pac(iL k) = Py, (i k), Vi k .
The same argument holds for

Pge(j. k)Y = Pg,c,(j. k). Vi k.

Now, let us examine Py, p, (a2, b)) = Z” Pa,p,c, (a2, by, cp). It corresponds, alter removal of C|, to the graph:

An R

20030032

@
e)e) Logout

|.lu|m 1.3.1 O

:|)_
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by * Now, let us examine Py, p, (a2, b)) = Zl" Pa,pc (ax, by,ep) it
corresponds, after removal of €'y, to the graph:

PA2C1 = bEPAZBlcl (a2’ by, Cl) = ‘ Az B,
‘ Y-_-{ \X, Z|{ \Y\

has the same form as the margin i:
where the variables A; and B| are independent. We thus have:

N / . Pa.p (az, b)) = Pa,(a2)Pp (b))
Pac(a,c) =Y Papc(a,b,c ot ' ‘
b

which we can now match with the original problem:

We thus have Pap (i j) = Py(DPp(). Vi) .

Pac The linear program

Writing all these constraints together, we have (Vi, j, k Is implicit):

Z Pa,pic U, j k) = Z Papc(i, j, k),

I 4

Z Papo U, j. k)= Z Papc(i, J. k),

The same argument holds for

Ppe

D Paupic (1 J k) = PaDPR(),
k

S N Papicy (0. k) 2.0
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corresponds, after removal of €'y, to the graph:

o

| B
z N,

As B
A7 7%
D ©® @ &

where the varlables A; and B| are independent. We thus have:

Aa 8 B
{ \ l \ l \ Pa,p(az, by) = Pa,(a2)Pp, ()
Yo X YA ¥

which we can now match with the original problem:

This is called an inflated scenario. Pam (. )) = Pa(DPp(i). Vi
Y

Xiny2z Writing all these consltraints together, we have (Vi, j, A is implicit):

Y Papc k)= Y Papclioj. k),
i g

Y Pusc, g k) =Y Papclij k),

: N Pa.nc (i j. k) = Py(D)Pg(j).
Pac, =Y Papc (a2, by, cr) = ) ; BRIELES noTey

by X122 Pi.pc (i, j k)20

Note that, however, the marginal

@
(=
e Pa,c, (a2, b1,c1) = Y Py, (x1)Py, The linear program
A
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The linear program

Writing all these constraints together, we have (Vi, j, k is implicit):

Z Papc (i, j. k) = Z Pagc(i, j. k),
i ¥
Z P.-'\_'ﬁlf.‘l{'r-'j' k) = Z P,‘Hlf'(i-j. k),
i i
D Panc (U J. k) = Pa(DPR()).
k

f’.-«\_!nlr,{f'-J}kk) >0

Now, the inflated correlations P,-hih(‘\ may obey additional constraints, but we
remark that the constraints listed above correspond to a linear program in the
primal form: indeed, the right-hand side of the equations are constant values that
depend only on the coefficients P4pc(i, j, A) which are known.

minimize 0
v eR"
Mo = b
>0

over

where the objective Is trivial, the constraint right-hand side b Is the only part of the
problem that depends on P4 gc, and the matrix M only depends on the problem

structure (matching the marginals).

Now, if this linear program Is infeasible, it proves by contradiction that no model
exlsts for the original problem (because orlginal problem has model => Inflation
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Y Yy where the objective is trivial, the constraint right-hand side b is the only part of the

s problem that depends on Py pe, and the matrix M only depends on the problem
structure (matching the marginals).

& By Now, If this linear program is infeasible, it proves by contradiction that no model
\ ’ exists for the original problem (because original problem has model => inflation
A has a model).

Homework 1

As o] B
/ \ / \ l \ Write the linear program using Convex.jl, and verily if the distribution P4 ge is
Ya X VA Y

compalible with the inflation (hint: It should not).

Thl‘a is C'\U@d an z'nﬂatcd scenario Thel’l You can use the numerically better behaved variant that has the slack variable =:
o o i Cl o Cl .

= rF 4

W

e maximize =
A

over ze€R.veR"

Pa,g,c, (a2, by, e1) = Y Px, (x1)Py,(y1)P i

X1l Y2z

Homework 2

Note that, however, the marginal distr
For which values of 1 the following distribution Is compatible with the inflated

model?

(17 ifa=h=nr
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0, otherwise.

A
Homework 3
r.IJ
= Test the distribution:
Yo
X1 Y

Papcla b.e) = {

+ + This distribution should be compatible with the inflation above; nevertheless it is

1o 3 not compatible with the causal structure we test (see Example 2 of the paper).
21 b
A

: Why s the linear program feasible then?

Hou:lnawmk 4
ELI:Rdne of the following questionsi]

Az (& By
/ \ / \ { \ LM Consider the dual problem of (?77?). How to Interpret the dual variables and
Yo X 7 Y the dual objective? Read the part about infeasibility certificates in the Mosek

Cookbook, section 2.3. Can you derive a causal compatibility inequality as in

&N
Sy
L N/ ’
' This is called an inflated scenario. Ther Example 4 of the paper)?
6 - Ml mplement the Spiral inflation given in FIG. 3 of the paper,
A
=

and verify that the

distribution (???) Is Incompatible.

Pa,gc, (a2, b1,c1) = Y Px,(x1)Py, (y1)P In [ 1

Xiyhy22

Note that, however, the marginal distr
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Note that, however, the marginal distr
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Test the distribution:
) /3, ifa+b+c=1
Pipcla.b.e) = ' . :
ascl 0, otherwise.
This distribution should be compatible with the inflation above; nevertheless it is
not compatible with the causal structure we test (see Example 2 of the paper).
Why Is the linear program feasible then?
Homework 4
Solve one of the following questions:
® Conslider the dual problem of (/). How to Interpret the dual varlables and
the dual objective? Read the part about infeasibility certificates in the Mosek
Cookbook, section 2.3, Can you derive a causal compatibility inequality as in
Example 4 of the papar)?
® |mplement the Spirhl inflation given in FIG. 3 of the paper, and verify that the
distribution (/”") Is Incompatible.
i
In [ ]:
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é Homework 2

For which values of t the following distribution is compatible with the inflated model?

1121, ifa=b=c,

Pipcla.b.c) =< i
ABENE, 0.6 { (1 = 1/6,  otherwise.

~ r 4
W
. Homework 3
Test the distribution:
S 13, ita+b+e=1
Pipc(a, b, c) = ’ i ’
ABc( ' 0, otherwise,
e This distribution should be compatible with the inflation above; nevertheless it Is not compatible with the causal structure we test (see Example 2 of the
1 paper). Why is the linear program feasible then?
s,
Homework 4
Solve one of the following questions:

® Consider the dual problem of (7). How to Interpret the dual variables and the dual objective? Read the part about infeasibility certificates In the
Mosek Cookbook, section 2.3. Can you derlve a causal compatibllity Inequality as In Example 4 of the paper)?
& Implement the Spiral inflation given in FIG. 3 of the paper, and verify that the distribution (777) is incompalible.
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1)

1= Now, If this linear program Is Infeasible, It proves by contradiction that no model exists for the original problem (because original problem has model =»

= inflation has a medel).

Homework 1
é Write the linear program using Convex.jl, and verily if the distribution P4 g is compatible with the inflation (hint: it should not).
sg You can use the numerically better behaved variant that has the slack variable =:

maximize I k
over € R, 0eR"

Homework 2

1/2¢ ifa=>5b=c
Papcla,bey = 77 .
ABC(a, 0, € { (1 = 0)/6. otherwise.

Homework 3

. r 4

W

e For which values of f the following distribution is compatible with the inflated model?
A

Test the distribution:

173, ifa+b+c=1,
0, otherwise,

Pipcla, b, c) = {
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