Title: Single-Shot-Decoding with High Thresholds in LDPC Quantum Codes with Constant Encoding Rate
Speakers: Nikolas Breuckmann

Series. Perimeter Institute Quantum Discussions

Date: March 18, 2020 - 4:00 PM

URL.: http://pirsa.org/20030026

Abstract: It is believed that active quantum error correction will be an essential ingredient to build a scalable quantum computer. The currently
favored scheme is the surface code due to its high decoding threshold and efficient decoding algorithm. However, it suffers from large overheads
which are even more severe when parity check measurements are subject to errors and have to be repeated. Furthermore, the number of encoded
qubits in the surface code does not grow with system size, leading to a sub-optimal use of the physical qubits.

Finally, the decoding agorithm, while efficient, has non-trivial complexity and it is not clear whether it can be implemented in hardware that can
keep up with the classical processing.

We present a class of low-density-parity check (LDPC) quantum codes which fix all three of the concerns mentioned above. They were first
proposed in [1] and called 4D hyperbolic codes, as their definition is based on four-dimensional, curved geometries. They have the remarkable
property that the number of encoded qubits grows linearly with system size, while their distance grows polynomialy with system size, i.e. d~n a
with 0.1 &lt; a &It; 0.3. This is remarkable since it was previously conjectured that such codes could not exist [1]. Their structure allows for
decoders which can deal with erroneous syndrome measurements, a property called single-shot error correction [2] as well as local decoding
schemes[3].

Although [1] analyzed the encoding rate and distance of this code family abstractly, it is a non-trivial task to actually construct them. There is no
known efficient deterministic procedure for obtaining small examples. Only single examples of reasonable size had been obtained previously [4].
These previous examples were part of different code families, so that it was not possible to determine a threshold. We succeeded to construct several
small examples by utilizing a combination of randomized search and agebraic tools. We analyze the performance of these codes under several
different local decoding procedures via Monte Carlo simulations. The decoders al share the property that they can be executed in paralel in O(1)
time. Under the phenomenological noise model and including syndrome errors we obtain a threshold of ~5% which to our knowledge is the highest
threshold among all local decoding schemes.

[1] A. Lubotzky, A. Guth, Journal Of Mathematical Physics 55, 082202 (2014).
[2] H. Bombin, Physical Review X 5 (3), 031043 (2015).

[3] M. Hastings, QIC 14, 1187 (2014).

[4] V. Londe, A. Leverrier, arXiv:1712.08578 (2017).
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Background:
e What are LDPC & topological quantum codes
e How can we exploit geometry to construct codes?

4D Hyperbolic Codes:
e Construction

e Decoding via belief propagation

Preliminary results:
e Method to reduce check-weights in LDPC codes
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How can we perform quantum computation in the presence of noise?
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e Arbitrary shifts of the state of a quantum computer
e Observation: Measurements discretise continuous errors
e [Shor ‘95]. Possible to correct errors in quantum computer

quantum error correcting codes

Threshold theorem [Aharonov - Ben-Or ‘96]:
There exists a threshold p, such that,
if the error rate per gate and time step is p < p,

then arbitrarily long quantum computations are possible.
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Quantum Codes: Toy Example

e Consider the +1 - eigenstates of Z Z and Z,Z_: |000> and |111> (logical states)
e Error: Pauli-X on the first qubit X, =» [100> and |011>

e -1-eigenstatesof ZZ and +1 - eigenstates of Z,Z  (parity checks / stabilizers)

(212>, 2> 23) Type of X-error
(1,1) no error
(—-1,1) error on the first qubit

(-1,-1) error on the second qubit
(1,-1) error on the third qubit
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Quantum Codes

[Shor '95]: Extend example to protect a single qubit against an arbitrary error
[Gottesman ‘97]. Framework to construct codes (Stabilizer Formalism)
Two important facts:

e Check measurements need to commute for well-defined outcome

e # encoded qubits = # physical qubits - # independent checks
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CSS Quantum Codes

Important special” case: All checks either X-type or Z-type

Quantum code is given by a 3-level graph'
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‘Not that special: any stabilizer code can be mapped onto a CSS code, preserving most of its properties.

Z-checks

X-checks



Example: Kitaev’'s Toric Code
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Example: 2D Toric Code

[ B /. N ) faces
\\\ \- ¥z
@ /O edges
| / | - XC
O . < O vertices

Any face and vertex share 0 or 2 edges:

This is a quantum code!
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Example: 2D Toric Code

Logical degrees of freedom
e Must commute with all
X-checks

e Hence: can not have

end-points

e Contractible loop: product of

Z-checks

e [ogicals are non-contractible

loops (k = 2)

Pirsa: 20030026 Page 11/61



Low-Density Parity Check Codes

1. The size of the support of each check is bounded

2. Each qubitis included in a bounded number of checks

Other qualities to judge a quantum code by

e Encoding rate k/n

1
EE|

e Distance d

e Efficient decoding (classical processing of syndrome)

e Threshold p_

e Number of qubits in each check

Checks local in some geometry: e Logical gates
LDPC
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LDPC Quantum Codes

Encoding k Distance d

2D Euclidean codes constant vn
(surface code, color code)

3D Euclidean codes constant Wn
(3D gauge color codes)

2D Hyperbolic codes linear log(n)

Hypergraph product codes linear vn

4D Hyperbolic codes linear poly(n)
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Linear rate codes are interesting:

[Gottesman ‘13]: LDPC codes with
e linear rate
e ‘good’ error correction capabilities
o efficient decoder

= can do quantum fault-tolerance with

constant overhead
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4D Hyperbolic Codes

QUANTUM ERROR CORRECTING CODES
AND 4-DIMENSIONAL ARITHMETIC HYPERBOLIC
MANIFOLDS

LARRY GUTH AND ALENANDER LUBOTYAKY

2014

AnsTiracT. Using 4-dimensional arithmetic hyperbolic manifolds,
we construct some new homologieal quantum ervor correcting codes,
They are LDPC codes with linear rate and distance n'. Their rate
is evaluated via Fuoler eharacteristic arguments and their distance

nsing Zo-svstolic geometry, This constroction answers a gueston
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Motivation: disprove conjectured bound on
parameters of homological codes
[Delfosse ‘13: holds for 2D]

L dz c O (n1+0(1))
show that 4D hyperbolic codes have parameters

n,k € O(n),d € On)
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Homological codes

There is a general principle for constructing quantum codes: Reci
Homology CCIRS
1. Take tessellated D-manifold
2. Pickdimension0<i<D

3. Identify:
a. i-cells with qubits

b. i-1-cells with X-checks

c. i+l-cells with Z-checks ‘

bt A — A }\ —
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Example: 2D Toric Code
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Homological codes
Use connection between code properties and geometry

n~volp(M) k ~ dim H,

irsa: 20030026 Page 17/61



Homological Codes: 3D Toric Code
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Homological Codes: 4D
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Why study 4D codes?

Parity checks satisfy local constraints:
e Simple decoding schemes based on local information

[Dennis et.al. ‘01, Pastawski et.al. ‘13, Hastings ‘13, Breuckmann et.al. ‘16, Kubicka et.al. ‘19]
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Why study 4D codes?

Parity checks satisfy local constraints:
e Simple decoding schemes based on local information

[Dennis et.al. ‘01, Pastawski et.al. ‘13, Hastings ‘13, Breuckmann et.al. ‘16, Kubicka et.al. ‘19]

[Hastings ‘13]: In combination with curvature allows for simple, effective decoding
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Single-Shot Decoding

In 2D topological codes:

e Check measurements give information about points
e Measurement errors may flip outcome
e need to repeat measurements to build confidence

In 4D topological codes: >
e Check measurements obey local linear dependence D & 6
e Measurement result can be ‘decoded’ R O
e Need to measure only once 4 @

[Bombin ‘13]
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Hyperbolic Codes in 2D

e Defined on negatively curved
surfaces of increasing area

e Surfaces have large genus:
many encoded qubits

e Parity check weight

comparable to surface code
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Regular tessellations in curved geometries

r = number of sides of a tile & s = number of tiles around a vertex
Subdivide faces into triangles:

r\s

Curvature «: condition on internal angles 4
(
>t ifk>0
a+f+ys=n ifk=0 5

<7 if kK <0.

Euclidean space: conditiononr & s

t/2+rn/r+n/s=nx 7
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Hyperbolic codes: encoding rate k/n

Gauss-Bonnet Theorem: / \
. area(M )
dim H] = — + 2
KdA =2 —2g @T
2 2

\k: (1—7——g) 'n,+‘f/

irsa: 20030026 Page 25/61



Hyperbolic codes: distance d

Definition: Injectivity Radius R -- largest radius of a /1
that can be embedded without self-intersections

In hyperbolic space:

R > const. x log vol p(M)
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How can these codes be constructed?

Page 27/61
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Construction
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Construction

e Consider symmetry group of tessellation
e Group elements serve as (non-commutative) coordinates
e |dentify fundamental triangles with group elements

e Procedure similar to “modding out translations” gives finite examples
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Regular tessellations in 3D
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Tessellation of T4
e 5 regular tessellations
e Focus on {5,3,3,5} tessellation
e Self-dual tessellation by 120-cells

e 4D polytope with 120 dodecahedra at boundary
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Hyperbolic codes: encoding rate k/n

Chern-Gauss-Bonnet Theorem:

D

; 1 ,.
3 (1) dim Hy(M) = —— / PH(0)
i—0 (2m)2 /M

4D \
vol(M)

dim Hy > 2——— — 2
2 = vol(S4)

-

k > const. X n

Show that the constant is 13/72 for {5,3,3,5}
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Hyperbolic codes: distance d

Definition: Injectivity Radius R -- largest radius of a /1
that can be embedded without self-intersections

In hyperbolic space:

R > const. x logvol (M)

Anderson’s Theorem: Volume of non-contractible i-cycle y is lower bounded
by volume of i-dimensional ball with radius being the injectivity radius R.

vol;(v) > vol;(Bg) > const.xexp ((i — 1)R)
Guth-Lubotzky (2014): (] > const. X nt ¢ ~ [0.1, 0.3}
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Same construction as in 2D

irsa: 20030026
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Subdivide tessellation into simplices
(higher-dim. triangles)

For example, the translation

ababacbdedcbabacedcbaedced

gives [[144,72]] code

e Exhaustive search (computationally
expensive)
e Randomized search

This method is not scalable
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Construction via Linear Representation: Dream
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Construction via Linear Representation

Can embed hyperbolic space into Minkowski space

D
HP = {l‘ eRVYWI zox= —.13% =+ er = -1, g > 0}

=1
Symmetry group is orthochronous, homogeneous Lorentz group
(generated by rotations and boosts)

O™ (1, D)

Change Gram-matrix of inner 4
produc_t to respect tessellation_ q; J

2 ¢ 0 00 p(ai)-ejzej—‘ — e

b 2 —1 0 0 Yi,i
g=10-12 —10] ™

00 —1 2 ¢| (

00 0 62 W@ p G GL
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Construction via Linear Representation

Instead of factoring out number N we factor out maximal ideal |
I CZ|¢| Zp|/I ~F,

Work with polynomials
Z[g) ~ Z[z)/(h) h=2"—z—1

ldeals come in two flavours

I[=(p), peP
I=(p,g), peP glhinF
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Construction via Linear Representation

Image of the full homogeneous Lorentz group O(1,D) under mod if | = <p>:
im(pomy) ~ GOs(q)
GO_(q) is group of 5x5 matrices which leave bilinear forms over Fq invariant

For characteristic > 2 it decomposes into simple groups as:

GOs5(q) =~ Q5(q) @ (Ca x Cy)
O(1,3,R) ~ SOT(1,3,R)x (Cyx C»)

Standard counting argument gives order of Q_(q):

Q5(q) x Co| = ¢V — ¢° — ¢ + ¢
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Obtain less symmetric examples:
Construction via Topological Coverings

=

D




# n k ideal structure Euler characteristic
I 144 72 ~ (SL2(5) x As) X Zo 26
2 720 184 - 125-fold covered by 10, Zs x Zs X Zs 130
3 3,264 744 - 3-fold covered by 6, Z3 636
4 3.600 736 - 25-fold covered by 10, Zs X Zs5 650
S 4,896 1,124 - 2-fold covered by 6, Zo 968
6 9,792 2,200 (2) Q5(4) 1,904
7 18.000 3,624 - 5-fold covered by 10, Zj5 3.250
8 18.432 4232 - 758 x [(As x Ag) x Zo] 3.584
9 19.584 4,324 - Q5(4) ¥ Zo 3,808
10 90,000 18,024  (\/5) [(Zg“i x SLg(S)) x As} x Zo 16,250
11 34,432,128 ? (3) Q5(9) % Zsg 6,216,912
12 257,213,088 7 (11) Qs(11) x Zo 46,441,252
13 61,140,357,792 7 (19) Q5(19) x Zso 11,039,231,268

Pirsa: 20030026

Page 40/61



Smallest example: Davis manifold
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Belief Propagation

e Decoder for classical LDPC codes

e Very low computational complexity

e Operates iteratively via message passing

e EXxpect to work well because
o (girthis 6
o Is an expander

o qubit degree is 5

Pirsa: 20030026 Page 42/61



T
720
3264
3600
9792
18000
19584

| | [
0.02 0.04 0.06 0.02 0.04 0.06
p p

Perfect Measurements Noisy Measurements
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0

|
0.02 0.04 0.06
P

Increasing number of rounds for fixed system size
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Work in Progress

Two open issues:

e We use a ‘vanilla’ version of BP: very likely that the result can be improved

e High stabilizer weight
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Weight reduction

General method to reduce stabilizer weights by Hastings [arXiv:1611.03790]:
e Associate a 2D cell complex with code and perform local operations
e Can be used to turn non-LDPC codes LDPC

e Checks turn out to be constant size but large

Z N
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Weight reduction

Alternative strategy: Subsystem codes

Our work: general method to turn a CSS LDPC code into a subsystem code.
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Break up stabilizer checks into smaller pieces (gauge operators)
Gauge operators do not commute
Measuring them gives random outcomes

Their product gives outcome of stabilizer measurement

ooooooool'\

o o Ol O O O O

OOOOOOOXO

s s 6le & @e

OUODUQUZ,Q
7 o| o Oz,o 0o 0 0 Ijx

0] o lo_glo o o | ‘

Bacon-Shor Code 3D Gauge Color Code
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LDPC Subsystem Construction
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LDPC Subsystem Construction

Homologically non-trivial (local) loop

n__/

All stabilizers still commute!

# encoded qubits = # physical qubits - # independent checks
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LDPC Subsystem Construction

VA
WA
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LDPC Subsystem Construction

Turned weight-6 and weigh-3 checks into weight-3 gauge checks. Bravyi et.al. ‘13
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LDPC Subsystem Construction

Merge several X-checks

Obtain code with k = n/9 and weight-3 checks
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LDPC Subsystem Construction

Generalizes to LDPC codes Cut-set

HH&"“‘"‘H-._H / // f/"//// .
— S Connected components of qubits
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LDPC Subsystem Construction

Advantages:

Low check weight makes measurements much simpler to facilitate

Errors on gauge operators

Support of logical operators unaffected

Support of logical + gauge reduced (by a factor depending on check-weight)

But: Still needs to be combined to a higher-weight stabilizer

= Do not expect improvement in threshold
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LDPC Subsystem Construction

Threshold can be improved when noise is biased (p,>p,):
Gauge-switching
‘Change our mind’ about what constitutes a stabilizer:

Add commutative set of (low-weight) gauge operators to stabilizer group

Recent work by Tuckett et.al. (2019) using different approach
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Toric Code Gauge Switching

—4+— mwpm [[300.2,10])

~4—~ mwpm [[675.2,15]]

1 == mwpm [[1200,2,20])
—4— mwpm [[1875,2,25])
—4— mwpm [[2700,2.30]]
| =4+ mwpm [[3675,2,35])
+ mwpm [[4800,2.40])

o
™

o
o

Logical error rate
o
&

o
N

004"

0.02 0.04 0.06 0.08 0.10 012
Physical error rate

Unbiased noise (indep. X/Z)
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Hyperbolic Codes Gauge Switching

10] g 1.0
0.8 0.8
@ @
© | ®
5 061 -4~ mwpm ([54.8]) 5 0.6
3 ~4— mwpm [[1080,122]) ©
B o.a | —+ mwem ((9216.1026]) B o4
g | 2
02 02 ~— mwpm ((54,8))
~4+— mwpm [[1080,122]]
004" 0.0 ~—4— mwpm [[9216,1026]]
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 000 002 004 006 008 010 012 014
Physical error rate Physical error rate
Unbiased noise (indep. X/Z) Biased noise (p,>>p,)
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Noisy Measurements

hanas I Py w ants

Logical error rate
=
o
M

—4— mwpm [[300,2,10]])

10-5 4
~4— mwpm [[675,2,15]]
2104 | ~4— mwpm [[1200,2,20]]
2x10°? Ix10°° 4x107 6x 107

Physical error rate

Toric Code
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Summary
4D hyperbolic codes:

e Gave construction of this code family

e several 4D hyperbolic manifolds

e Code family has ~20% encoding rate

e BP decoding with noisy syndrome (p=q): results consistent with p_~4%

Preliminary results on LDPC subsystem code construction:
e Can locally merge and break checks into gauge operators
e ‘Balancing’ check weights
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Thank you for your attention!

Questions?

W arXIV200103568 Quantum Science &
Technology Institute
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