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QOutline

» Review of OPEs with energy-momentum tensor

» Virasoro algebra

> Asymptotic states
» Hilbert space of CFT

» QOverview of null states
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Review
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OPEs with energy-momentum tensor

Last time we have used the fact that for a primary field

~[Q¢, ] = 0¢ = —(hO £ + hB:& + £, + £87) ¢
to find out the OPEs

ho(w,w) " Ow d (W, w)
(z -w)? Z-w

hg(w,w) L Owd(w, w)

(7 —w)? I—w

R(T(2)p(w,w)) ~

R(T(2)p(w,w)) ~
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OPEs with energy-momentum tensor

Last time we have used the fact that for a primary field

—[Q¢, 9] =60 = _(hazf'*' ;lai'g"’gaz +g@z)¢
to find out the OPEs

ho(w,w) " Owd (W, w)
(z -w)? Z-w

hg(w,w) N O d(w, w)

(7 —w)? I—w

R(T(2)p(w,w)) ~

R(T(2)p(w,w)) ~

In fact, these two OPEs can be taken as the definition of ¢ being
primary with conformal dimension (4, h).
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Virasoro algebra
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Modes of energy-momentum tensor

Let's write the holomorphic and anti-holomorphic components of
the energy-momentum tensor as the Laurent series

T el

nez

d:, Zn+1 T
271' (2)

i, , - - 1
T(2) =) ()" %Ly, Ln=-= ¢ dzz""'T(2)

— 27
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The Virasoro algebra

In general £(z) = 3, anz™*! so that

§ : An ¢ n+lp( dn > ntlpe o

e’?
= Z(anLn + &nin)

nez
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Charge associated to conformal transformation

Recall that the charge associated to the infinitesimal conformal
transformation

2z 71+88(z), 7o Z+€E(T)

1 . : 1 e
0c = 5§ d6@T) + 5 § d2EDTQ
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The Virasoro algebra

In general £(z) = 3, anz™*! so that

§ : An ¢ n+lp( dn > ntlpe o

e’?
= Z(anLn + &nin)

nez
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The Virasoro algebra

We expect the L,, L, to be a representation of the conformal
algebra generators on the CFT Hilbert space.

However, since we have to allow projective representations we have

to use a central extension of the Witt algebra, known as Virasoro
algebra:
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The Virasoro algebra

We expect the L,, L, to be a representation of the conformal
algebra generators on the CFT Hilbert space.

However, since we have to allow projective representations we have

to use a central extension of the Witt algebra, known as Virasoro
algebra:

. (6 ;
[Lfb Lm] = (n—m)Lpin + En(nz = 1)5m+n,0

C

[in, im] =(n-— m)lzmﬂa o+ 19

[Ln, Lm] — 0

n(n* = 1)8men.0
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The Virasoro algebra

We expect the L,, L, to be a representation of the conformal
algebra generators on the CFT Hilbert space.

However, since we have to allow projective representations we have
to use a central extension of the Witt algebra, known as Virasoro
algebra:

C

1’2 H(H2 o5 1)5m+n,0

c
12

[Lfb Lm] = (fl —m)Lypin +
[in, im] =(n-— m)lzmﬂa o
[Ln, Lm] — 0

n(n® = 1)8m+n,0

¢ is called the central charge or conformal anomaly. Note that the
commutation relations with n,m € {-1,0, 1} are not affected.
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OPE of T with itself

Making use of the Virasoro algebra commutation relations, we can
see that

o, G oT(w)  8,T(w)
R(T(2)T(w)) ol T o ow

R(T()T(w)) ~ 0
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OPE of T with itself

Making use of the Virasoro algebra commutation relations, we can
see that

ATy o 12 oT(w) 0T (w)
A = e e

R(T()T(w)) ~ 0

T(z) is almost a primary field with (A, k) = (2,0)!
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Action of Virasoro algebra on primaries

The (adjoint) action of the Virasoro algebra on primary fields is
given by

[L., #(2,2)] = h(n+1)2"¢(2,7) + 2**'0.¢(z, 2
(L., $(z,2)] = h(n+ 1)7"¢(2,2) + 7" 0: (2, Z
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Action of Virasoro algebra on primaries

The (adjoint) action of the Virasoro algebra on primary fields is
given by

[Ln, $(2,2)] = h(n+1)2"¢(z2,2) + 2"+ 0:4(2,2)
[Ln, $(2,2)] = h(n+1)7"¢(2,2) + 7" 9:4(2,2)

Note that

[Lo, $(0,0)] = h¢(0,0)
[Lo, $(0,0)] = h¢(0,0)
[Lm QS(O: 0)] = [I_Jn: gb(O, 0)] = 03 n 2 1
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Asymptotic states
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Asymptotic states

As we discussed, in radial quantisation z = exp(x +iy) and z =
describes the infinite past.
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Asymptotic states

As we discussed, in radial quantisation z = exp(x +iy) and z =0
describes the infinite past.

We can use this fact to define asymptotic in-states associated to
primary operators:

|$in) := lim ¢(z,2)|0)
z,2—0
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Asymptotic states

As we discussed, in radial quantisation z = exp(x +iy) and z =
describes the infinite past.

We can use this fact to define asymptotic in-states associated to
primary operators:

|$in) := lim ¢(z,2)|0)
2,2—0

How should we define the asymptotic out-states?

(Pout| := (lﬁbin»Jr
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Asymptotic states

As we discussed, in radial quantisation z =exp(x +iy) and z =0
describes the infinite past.

We can use this fact to define asymptotic in-states associated to
primary operators:

#in) = lim ¢(z,2)[0)

How should we define the asymptotic out-states?

(Pout| := (lﬁbin»Jr

We need a notion of adjoint (and of inner product) first, though!
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Hermitian conjugate

If we were working in Minkowski space we would expect hermitian
conjugation to leave space-time coordinates invariant. However, we
are using a wick-rotated coordinate x = it, so we expect

X—>=x = z=" 5y = 1>

This leads us to define

i ]t
[6(z, D] = f(z, Z)Gb(j’ j)

“~

with f to be decided.
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Let's find out what f is
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Let's find out what f is

i) I = (Pout | Bin)
zgn—}() AT <0 ‘ c/b(

2. 2)o0.0) o)

L <

lim f(% | )(0 | 6(w, w)e(0, 0) | 0)

W, Ww—00" )
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Let's find out what f is

Hgin) I* = (Pout | Bin)
s 6 9o]of 5 o000

L <

_’
W w

e im oL

W,w—00"

lim f(l l')(0|gb(w,w)qb(0,0)|0)

W, W00 1,2h WW;' w w
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Let's find out what f is

Hgin) I* = {Pout | Pin)

lim f(&,,\,< ‘ (- -)¢(0 0)‘ )

‘s ‘s

im_ /(370166 00.0) 10

wow

o« lim : ]‘(i i)

W, W —00

w,w—00 2k, 207 \w’ W

so we choose
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What does this mean for the Virasoro algebra?

One can prove that this choice of hermitian conjugation implies
that

Li=l., Li=IL.,

if we require T(z), T(z) to be self-adjoint.
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What does this mean for the Virasoro algebra?

One can prove that this choice of hermitian conjugation implies
that

Li=l.. Q=L

if we require T(z), T(z) to be self-adjoint.
Note that Lo and L¢ are self-adjoint. In fact, we will interpret
Lo+ Lo

to be our Hamiltonian, since it is the generator of dilations in the
complex plane, which correspond to on the
cylinder.
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What does this mean for the Virasoro algebra?

One can prove that this choice of hermitian conjugation implies
that

Li=l., Li=IL.,

if we require T(z), T(z) to be self-adjoint.
Note that Lo and Lg are self-adjoint. In fact, we will interpret
Lo+ E()

to be our Hamiltonian, since it is the generator of dilations in the
complex plane, which correspond to time translations on the
cylinder.

What does i(Ly — L) generate?
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Hilbert space of CFT
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Vacuum state

First of all, we require that

lim 7'(z)|0)
z—0

is well defined.
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Vacuum state

First of all, we require that

lim 7'(z)|0)
z—0

is well defined. This means that
L,|0) =0 when n> -1.
Similarly we need

L,|0) =0 whenn>-1.
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Vacuum state

First of all, we require that

lim 7'(z)|0)
z—0

is well defined. This means that
L,|0) =0 when n> -1.
Similarly we need

L,|0) =0 whenn>-1.
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Highest weight states

In the following we will use the notation

|, h)y = ¢(0,0)|0)

for the in-state of a primary operator of dimension (A, h).

We have
Lulh, k) = [Ly, $(0,0)]]0) + ¢(0,0)L,|0)

which means that

Lolh, h) =
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Highest weight states

In the following we will use the notation

|, h)y = ¢(0,0)|0)

for the in-state of a primary operator of dimension (4, ).

We have
Lulh, k) = [Ly, $(0,0)]]0) + ¢(0,0)L,|0)

which means that

Lolh, k) = h|h, k)
Lolh, h) = hlh, h)
Lnlh, il) =
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Highest weight states

Note that . .
[LU, Ln] = —-nL,, [LU, L ] =-nL,

which means that L, and L,, act as ladder operators:

LoL,|h, h) = (h—n)L,|h, h)
LoL,|h, h) = (h—n)L,|h, h)
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Highest weight states

Note that . .
[LU, Ln] = —-nL,, [LU, L ] =-nL,

which means that L,, and L,, act as ladder operators:

LoL,|h, hY = (h—n)L,|h, h)
LoL,|h, h) = (h—n)L,|h, h)

The state |k, h) is an eigenvector of Ly, Ly and is annihilated by
all lowering operators. We call this kind of state a highest weight
state.

What is the physical motivation for requiring the in-states to be
highest weight states?
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Descendant states

All other states can be obtained from the highest weight states by
repeated application of the lowering operators. Note that this is
considerably more complicated that an harmonic oscillator, since
there are infinitely many lowering operators!
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Unitarity

Pirsa: 20030023 Page 47/54




Unitarity

Is the Hilbert space we constructed actually an Hilbert space? As
things are, we may get vectors with negative norm! We say the
CFT is unitary if all states have non-negative norm.

Note first of all that

|L-1|h, h)||* = {h, h| L1L_1 | h, k)
={(h,h|[Li,L_1]|h,h)

=2{h,h|Lg|h,h)
= 2h(h, h | h, h)

So h > 0 is a necessary condition for unitarity. What about A?
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Unitarity

We can also constrain the central charge ¢ with the unitarity
requirement. In fact

IL-2|0)||* = (0| LaL_2 | O)
= (0| [L2,L_2] |0)
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Unitarity

We can also constrain the central charge ¢ with the unitarity
requirement. In fact

IL-2]0)]|* = (0| LaL_2 | 0)
=(0]|[Lo, L_2]]0)
=(0| Lo +3c|0)
= 3¢(0 | 0)

so we also require ¢ > 0.
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Unitarity

We can keep playing this game to try to find more and more
requirements for ¢ and h. At the end we get:

Pirsa: 20030023 Page 51/54




Unitarity

We can keep playing this game to try to find more and more
requirements for ¢ and h. At the end we get:
Theorem

The CFT is unitary if and only if one of the following happens:
» ¢c>1andh >0

> there are integers m > 2, 1 < p < g < m such that

6
- dm(m + 1)
o Lm+1p - mq]* - 1
dm(m + 1)

e =il
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Unitarity

We can keep playing this game to try to find more and more
requirements for ¢ and h. At the end we get:

Theorem
The CFT is unitary if and only if one of the following happens:

» c>1andh >0

> there are integers m > 2, 1 < p < g < m such that

6
- dm(m + 1)
p o Lm+1)p - mq]* - 1
dm(m + 1)

e =il

Note: when we talk about & we mean individually for each primary
operator. Also, the same applies to A.
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Null states
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