Title: Echoes and Holography

Speakers: Krishan Saraswat

Collection: Echoes in Southern Ontario

Date: February 24, 2020 - 2:00 PM

URL: http://pirsa.org/20020089

Pirsa: 20020089

1

Echoes, Holography, and Chaos

Krishan Saraswat Supervisor: Dr. Niayesh Afshordi

February 24, 2020

Pirsa: 20020089 Page 2/27

Overview

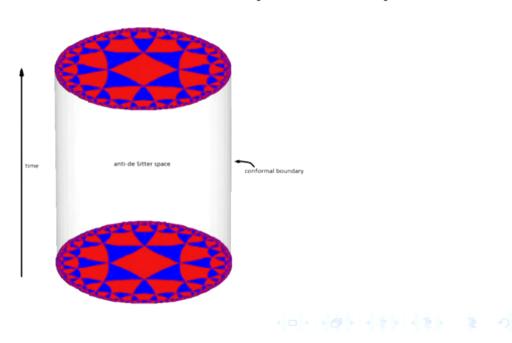
1

- Background and Context
- Pose a Question
- Progress (arXiv: 1906.02653)

Pirsa: 20020089

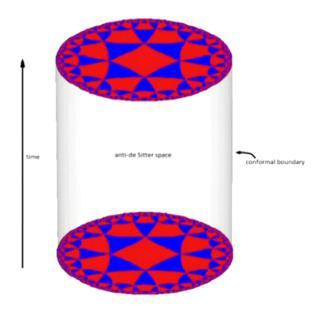
Black Hole Evolution Unitary?

1


- QFT applied to BH background predicts BH evaporates into thermal radiation.
- ullet BH evolution: pure state ightarrow mixed state
- Violates unitarity.
- Should a complete theory of quantum gravity violate unitarity?

Pirsa: 20020089 Page 4/27

Holographic Principle


- Suggests gravitational systems in some subregion can be mapped to a system on the boundary of subregion.
- Most well understood realization of holographic principle comes from AdS/CFT
- Gravitational system in AdS can be understood in terms of conformal field theory on boundary of AdS.

Pirsa: 20020089 Page 5/27

Basic Idea behind AdS/CFT

- Different CFT states give rise to different AAdS bulk geometries E.g. $|0\rangle \to \text{Empty AdS}$.
- Bulk field $\phi(z,x)$ dual to an operator in CFT $\mathcal{O}(x)$.
- Information of ϕ in bulk can be understood in terms of CFT correlators involving \mathcal{O} .

Pirsa: 20020089 Page 6/27

Does AdS/CFT Resolve Information Paradox?

- AdS BH can be mapped to CFT which respects unitarity

 AdS BH evolution respects unitarity.
- Where does Hawking's calculation go wrong?
- How is unitarity restored in bulk?
- Answering these questions requires a good understanding of how the bulk emerges from CFT dynamics.
- Current understanding of the how bulk arises from CFT is incomplete.
- Considerations from string theory and quantum information theory suggest that restoring unitarity requires modifications near the horizon (Fuzzball, Firewall, etc.).

Pirsa: 20020089 Page 7/27

Echoes in Holographic Quantum Systems?

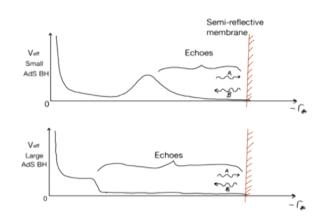
0

- If unitarity in bulk is restored via modification to horizon it is possible that such modifications give raise to echoes.
- Are their holographic CFT states that exhibit echoes?
- What exactly should we look for and calculate in CFT?

Pirsa: 20020089 Page 8/27

Echoes of AAdS BH

7


- Good place to start is to consider how echoes will be generated in bulk.
- Consider scalar waves in (d+1)-dimensional Schwarzschild AdS background.
- Radial part of solution will obey:

$$\frac{d^2\psi}{dr_*^2} + (\omega^2 - V)\psi = 0 \tag{1}$$

Effective Potential for AdS Schwarzschild BH

D

- Large AdS BH means $R_H \gg L$
- ullet Small AdS BH means $R_H \ll L$

Pirsa: 20020089 Page 10/27

Echo Time in Geometric Optics Approx.

Assume we have a BH metric of the form:

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega_{d-1}^{2}$$
 (2)

• The echo time in geometric optic approx. given as:

$$t_{echo} = 2 \int_{R_H + \delta R}^{r_t(\omega)} \frac{dr}{f(r)}$$
 (3)

• δR is the coordinate radial distance perturbations get reflected (proper Planck length from horizon).

$$\ell_{p} = \int_{R_{H}}^{R_{H} + \delta R} \frac{dr}{\sqrt{f(r)}} \Rightarrow \delta R \sim \frac{\ell_{p}^{2}}{\beta}$$
 (4)

• Where $\beta = T_H^{-1}$ is inverse of Hawking temprature.

ロト・ロト・ミト・ミト き かなで

Expansion of Echo time in ℓ_p

1

• Using ℓ_p as a perturbative parameter we do an expansion of echo time integral:

$$t_{echo} = \frac{\beta}{2\pi} \left[\ln \left(\frac{\beta R_H}{\ell_p^2} \right) - \ln \left(1 + \frac{f''(R_H)}{8} \beta R_H \right) + \chi_0(\omega) + \mathcal{O}(\ell_p) \right]$$
(5)

- Leading order term represents time spent in Rindler region.
- Second term important for near extremal BHs.
- Third term involving χ_0 represents time spent outside Rindler region.

Pirsa: 20020089

Leading order contribution

7

• Can consider leading order term in expansion using the expression for β for (d+1) dimensional Schwarzschild AdS BH:

$$t_{echo} \simeq \frac{\beta}{2\pi} \ln \left[\frac{R_H}{\ell_p^2} \left(\frac{4\pi R_H L^2}{dR_H^2 + (d-2)L^2} \right) \right] \simeq \begin{cases} \frac{\beta}{2\pi} \ln \left(\frac{R_H^2}{\ell_p^2} \right) & R_H \ll L \\ \frac{\beta}{2\pi} \ln \left(\frac{L^2}{\ell_p^2} \right) & R_H \gg L \end{cases}$$
(6)

- ullet For small AdS BH $t_{echo} \sim rac{eta}{2\pi} \ln{(S_{BH})}$
- ullet For large AdS BH $t_{echo} \sim rac{eta}{2\pi} \ln{(S_{cell})}$

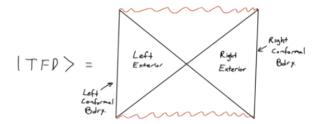
Holographic interpretation of echo time

1

- In AdS/CFT large AdS BHs in bulk is dual to strongly coupled large N gauge theory (at temperature T_H).
- In particular $N^2 \sim (L/\ell_p)^{d-1}$
- In this case the echo time is:

$$t_{echo} \sim rac{eta}{2\pi} \ln\left(N^2\right)$$
 (7)

Why is this interesting?

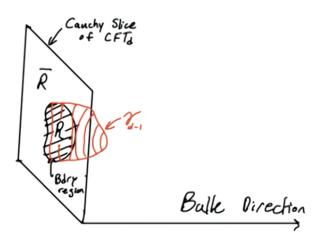


Entanglement Disruption for TFD

• Consider the Thermofield double state:

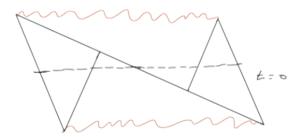
$$|TFD\rangle = \frac{1}{\sqrt{Z}} \sum_{n} e^{-\beta E_{n}/2} |n\rangle_{L} \otimes |n\rangle_{R}$$
 (8)

 In AdS/CFT dual to a two sided Large AdS BH geometry:


- Two exteriors connected by non-traversable wormhole.
- Entanglement of left and right is manifested geometrically by non-traversable wormhole.

Pirsa: 20020089 Page 15/27

 Consider mutual information between left and right CFT:


$$I(L,R) = S(L) + S(R) + S(L \cup R)$$
(9)

 Each term can be calculated geometrically using the area of co-dimension two extremal surface anchored to boundary (Ryu-Takayanagi Formula).

$$S(R) = \frac{A(\gamma_{d-1})}{4G_N} \tag{10}$$

- Now consider the perturbed state $\mathcal{O}_R(-\tau) | TFD \rangle$.
- In bulk can think of a particle that starts at boundary goes toward black hole.
- When t very far in past very large blue-shifted energy at t = 0 slice.
- Back-reacted geometry looks like shock-wave geometry:

- Use RT prescription in shockwave geometry.
- Mutual Info. is zero if $\tau \geq \frac{\beta}{2\pi} \ln \left(\frac{S}{\delta S} \right)$

Scrambling Time vs Echo Time

D

- What is the smallest choice of δS ?
- If we want to interpret perturbation in terms of Hawking quanta $\delta S = 1 \Rightarrow \tau = \frac{\beta}{2\pi} \ln{(S)}$
- Another choice from geometric perspective.
- GR description of spacetime valid on proper lengths larger than Planck length.
- Suggests smallest semi-classical perturbation should shift the horizon by amount larger than proper Planck length.
- Can show $au \simeq t_{echo}$
- The echo time can be identified as the amount of time it takes to disrupt entanglement in TFD

Role of Entanglement in Horizon Crossing

- Close to horizon geometry can approximated by Rindler wedge.
- Same near horizon geometry can be "simulated" by constant accelerating observer in Minkowski space.
- Consider vacuum state in Minkowski space from perspective of accelerating observer.
- Vacuum state in flat spacetime in Rindler coordinates takes the form of TFD state.
- The TFD state contains specific correlations that leave vacuum regular at "horizon."
- But TFD is not unique purification of thermal state.
- General purifications will have divergent behaviour at horizon in Hamiltonian (presence of Firewall).

Pirsa: 20020089 Page 19/27

From Entanglement Disruption to Echoes?

D

- Start with black hole whose near horizon vacuum state is TFD.
- Introduce perturbation it will take $t_{echo}/2$ to get within Planck length of horizon.
- After t_{echo} information in perturbation gets scrambled and disrupts correlations near horizon.
- Perhaps these disruptions will generate modifications to near horizon geometry that partially reflects perturbations.
- Gives a hypothesis of a mechanism that generates echoes.
- How can we test it?

Pirsa: 20020089 Page 20/27

Quantum Chaos

D

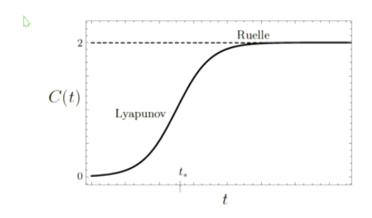
- Chaos is generic feature thermal systems.
- Classically, chaos diagnoses sensitivity to initial conditions:

$$\{x(t), p(0)\} = \frac{\delta x(t)}{\delta x(0)} \sim e^{\lambda_L t}$$
 (11)

- λ_L called Lyapunov exponent.
- We say quantum system exhibits quantum chaos if:

$$C(t) = \langle |[\hat{W}(t), \hat{V}(0)]|^2 \rangle_{\beta} \sim e^{2\lambda_L t}$$
 (12)

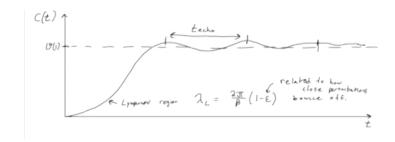
AdS BHs as Chaotic Systems


0

- AdS black holes dual to certain holographic thermal CFT states at $T = T_H$.
- Translate thermal field theory calculations to gravity calculation in AdS BH spacetime.
- Will find the commutator squared at times exhibits exponential growth in interval $t_d \ll t \ll t_*$.
- Lyapunov exponent equals $2\pi/\beta$.
- For thermal quantum systems with large number of d.o.f. it is conjectured that $\lambda_L \leq 2\pi/\beta$

Pirsa: 20020089 Page 22/27

C(t) for Large N Holographic Theories

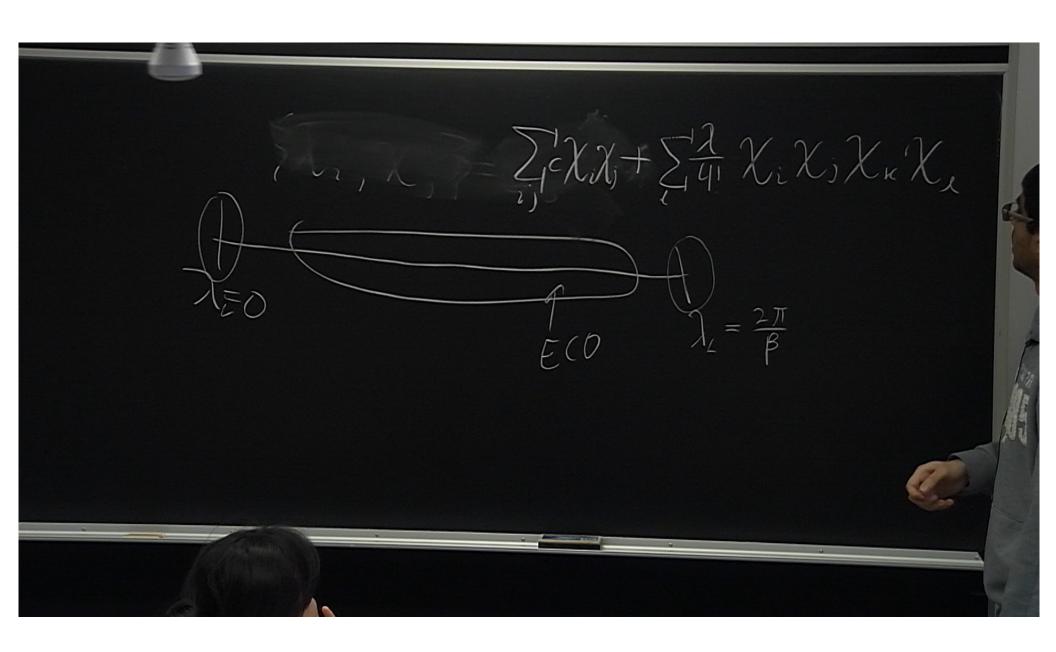


$$C(t) \sim \begin{cases} N^{-1} & t < t_d \\ N^{-1} e^{\lambda_L t} & t_d \ll t \ll t_* \\ \mathcal{O}(1) & t > t_* \end{cases}$$
 (13)

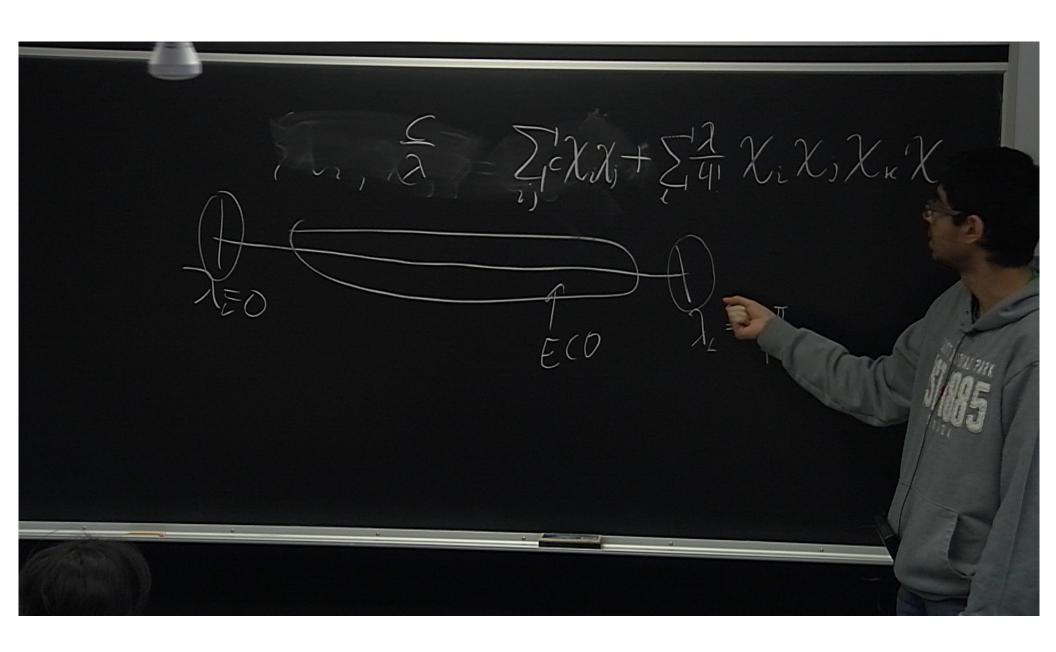
- $C(t_*) \to \mathcal{O}(1)$ where $t_* \sim \beta \ln(N^2)$ is scrambling time.
- Ruelle region expected to be controlled by QNM of dual BH.

How Might Echoes Manifest in C(t)?

- Echoes are a symptom of near horizon modifications that allow for partial reflection of perturbations.
- $t_{echo} \sim t_{scr}$ if modifications are localized within proper Planck length of horizon.
- What should we look for in a calculation of C(t) that indicates modifications that result in echoes?
- 1) Lyapunov exponent should be smaller than $2\pi/\beta$.
- 2) $C(t > t_{scr})$ should exhibit periodic behaviour for a while before saturating to a constant.


Pirsa: 20020089 Page 24/27

Summary


- Considered time scale of echoes for AAdS BHs.
- Showed that for perturbations that shift horizon by Planck length you can identify scrambling time scale with echo time scale.
- Suggest a bulk picture of how scrambling generates modified horizon structure which might generate echoes.
- Suggested to diagnose existence of echoes in Quantum system by calculating commutator square of Hermitian observables and check if it satisfy two criteria.
- 1) Lyapunov exponent should be smaller than $2\pi/\beta$.
- 2) $C(t > t_{scr})$ should exhibit periodic behaviour for a while before saturating to a constant.

Pirsa: 20020089 Page 25/27

Pirsa: 20020089 Page 26/27

Pirsa: 20020089 Page 27/27