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Abstract: Causal reasoning is vital for effective reasoning in science and medicine. In medical diagnosis, for example, a doctor ams to explain a
patientd€™s symptoms by determining the diseases causing them. This is because causal relations---unlike correlations---allow one to reason about
the consequences of possible treatments. However, all previous approaches to machine-learning assisted diagnosis, including deep learning and
model-based Bayesian approaches, learn by association and do not distinguish correlation from causation. | will show that these approaches
systematically lead to incorrect diagnoses. | will outline a new diagnostic algorithm, based on counterfactual inference, which captures the causal
aspect of diagnosis overlooked by previous approaches and overcomes these issues. | will additionally describe recent algorithms from my group
which can discover causa relations from uncontrolled observational data and show how these can be applied to facilitate effective reasoning in
medical settings such as deciding how to treat certain diseases.
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Causal Inference in Healthcare

Ciaran M. Lee
Babylon Health & University College London




What is causal inference?

AUSNBIRE - Causal Inference provides the tools | .

to ask and answer causal questions THE
BOOK OF
» Does smoking cause lung cancer? WHY
~ MODELS, Rl—j;\SU;‘J_I?A\‘(i. « g —

JUDEA PEARL hd WOUld I have Cancer had I SmOked? OF CAUSE AND EFFECT
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JOURNAL OF
CAUSAL
INFERENCE

| first got interested in causal inference as a way to better

Journal of Causal
Inference

Ed. by Imal, Kosuke / Pearl,
Judea / Petersen, Maya Liv /
Sekhon, Jasjeet / van der
Laan, Mark J.
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Causal inference is useful for studying quantum cryptography

Pirsa: 20020066
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Clever maths will stop hackers
spying on the quantum internet

00OOO00O TECH & SCIENCE
o CAN WE BUILD A HACK-PROOF INTERNET

USING QUANTUM PHYSICS? NEW
BREAKTHROUGH HEIGHTENS 'TECHNOLOGY
ARMS RACE'

BY KASTALIA MEDRANO ON 1/12/18 AT 8:54 AM EST
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ill stop hackers
m internet

Clever maths
spying on the g
000000

A HACK-PROOF INTERNET

By Jacob Aron

TUNLWT L USINGAUANTUMS PNEW

the structure of the network. Essentially, a computer analyses the direction of information flow
between the different nodes to figure out its causal structure. For example, if node A is connected to
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Al Health Services Virtual Health Services Physical Health Services

e T ol

babylon
First things first. Have you recently

injured your head, (including a burn
or 8 bite)?

Fight, do you have any pain?

Soiry 1o haar that. How did It start?

How bad |4 your pain?

| see. Do you have any dizziness?

No
Yes, it began suddenly

Yos, it began gradually

babylon
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The causal team

Anish Dhir
Research Scientist

Omar Jahangir
Research Intern, UCL
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Chris Hart Jon Richens
Research Scientist Research Scientist

Ciaran Lee

Logan Sraham Senior Research Scientist & team lead

Research Intern, Oxford
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« Causal knowledge is vital for effective reasoning in
science and medicine

* In medical diagnosis, a doctor wants to determine
the disease causing symptoms

* A direct causal relation, unlike a correlation, means
treating the disease will reduce symptoms

9 Made with ™
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Suppose you have high cholesterol and your doctor told you a
new drug has been shown to be effective when tested on the
population as a whole.

That is, the drug is highly correlated with recovery

Would you take it?

11 Made with @

irsa: 20020066 Page 12/92



Suppose, for a second opinion you see a different doctor who
tells you that this drug has been shown to be ineffective when
considering men and women alone

@ 0 (e
i

That is, the drug is negatively correlated with recovery for men &
woman when considered separately

Would you take it?

13 Made with ™
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By looking at different subsets of the data, associations can
completely reverse! This is Simpson’s paradox.

Standard machine learning only learns patterns & correlations

If it doesn’t know your gender, it would prescribe this drug to you.

If it kKnows you're a woman, it wouldn’t prescribe the drug.

15 Made with ™
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What’s going on?

When offered the drug, men are more likely to take it. Men are also
more likely to recover regardless of taking it. Gender is a confounder

Recovery

Gender

Instead of asking whether the drug is highly correlated with recovery,
ask if it causes it

16 Made with ™
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I'll now show how the inability to disentangle
correlation & causation leads to issues in an important
problem in medicine:

Diagnosis

17 Made with @
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Disease Model

Risk
Factors

Diseases

Symptoms

Pirsa: 20020066

o bo °
o ’o

Probabilistic Generative Model (PGM)

« 3 layers involving risk factors (like
smoking), diseases (like angina), symptoms
(like chest pain).

Causal links between nodes input by
doctors and epidemiologists

Have probabilities for each link, “How likely
are you to have angina if you have chest
pain and smoke”

Page 17/92



Disease Model

.
: H
‘ -
- \

Risk Factor

Disease

Symptom
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Posterior ranking approach to diagnosis

Given set of symptoms & risk factors, {S, R}, disease
model is used to calculate posteriors for each disease, D:

PD|S,R)

Diseases are then ranked by their posteriors, from most
likely disease, to least likely

20 Made with ™



Not taking causal relations into account
can lead to problems

/\
G\)

D
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Simpson’s Paradox in action!

/ O\
G\)
©/
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diabetes nee
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shorthess
of breath Observed
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Diagnostic Desiderata

 Consistency: The likelihood that a disease Is causing
symptoms should be proportional to the posterior
likelihood of that disease

e Causality: Any disease D that cannot cause any of the
patient’s observed symptoms should not be included in
a diagnosis

o Simplicity: Diseases that explain a greater number of
the patient’'s symptoms should be more likely

08 Made with ™



Diagnostic Desiderata

 Consistency: The likelihood that a disease Is causing
symptoms should be proportional to the posterior
likelihood of that disease

«“Oaysality: Any disease D that cannot carase”any of the
patient’s Cimarved symptoms show'e ot be included in
a diagnosis

o SimplicibwsT seases that explain a greetar number of
thegeGiuent’'s symptoms should be more likely
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Causal Models

* Observed terms are deterministic
l function of parents and latent “noise”

to latent distribution

> —FE

\ l * Noise terms are distributed according
/ + A=f(C, Un), ua~p(un)

* These jointly generate P(A|C)

30 Made with ™



What can we do with them

Inference Hierarchy

Seeing (observations)

Acting (interventions)

Imagining (counterfactuals)

31 Made with @
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[ Seeing (observations) )

32
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Some genetic factor

Smoking ° —— Cancer

given

Probability of
cancer

1

P(C=T

Smoking has
been observed

—

S =T)

Made with ™
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Some genetic factor

Smoking e > Cancer

[ Acting (interventions) )

given
Probability of subject was
cancer made to smoke
| 1
I 1 ' T 1
P(C=T|do(S=T))

33 Made with ™
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@ Some genetic factor
Smoking @ > Cancer

given . :
and if subject
Imagining (counterfactuals) Probability of subject subject has was made to
not having cancer cancer not smoke
| | l

P(C = FIC = T.do($ = F)

34 Made with 0@
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Counterfactual Inference compute
P(C=F | C=T, S=T, do(S=F)):

1. Abduction: update P(A) to
P(A | S=T, C=T)

2. Action: Apply do(.) operator to
force S=F

3. Predict. Compute P(C=F) in model
with do(S=F) & P(A | S=T, C=T)

Made with ™
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Posterior ranking versus Counterfactual Inference

P(D=T|S=T,R) Versus P(S=F | S=T, R, do(D=F))
“What is most likely “Given symptoms are present, would
disease, given evidence?” they not be, had disease be cured?”

36 Made with ™
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Posterior ranking versus Counterfactual Inference

P(D=T|S=T,R) versus P(S=F|S=T, R, do(D=F))

~—

Probability of Disablement

37 Made with ™
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Disablement

—/ \

shorthess
of breath Observed

Made with @
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Disablement

—/ \

shorthess
of breath Observed
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Disablement

shortness
of breath
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Expected Disablement

Euis(Di, €) 1= ) _|S+ \ 84| p(S'IE, do(Dy = 0))
SI

Derives from notion of necessary cause and measures how how
well a single disease explains presented symptoms

Expected Sufficiency

Esug(Dx, €) := Y _|S}|p(S'|E, do(Pa(S1) \ Dk = 0))
T

Derives from notion of sufficient cause and measures how many
symptoms we expect to be caused by a disease

44 Made with ™
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Theorem: and
satisfy three desiderata of Consistency,
Causality, and Simplicity

45 Made with 0
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Comparing posterior ranking and counterfactual ranking

Disease

We test using 1700 medical cases Peptic ulcer
prepared by a panel of doctors Patient

Gender: Female
Age: 28
Duration of symptoms: 3 days

From symptoms & medical history from Evidence
case, diagnose disease Obesity: False

Smoker: True

Nausca: True

Vomiting: False

Output ranked list of diseases, compare Weight loss: False
prObability Of case disease in top k Epigastric Pain: True

46 Made with ™
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Esug( Dk, E) := Z|S’+|P(Sl|5; do(Pa(S4) \ Dx = 0))

S’
0.5

E  Poslerior

s Expected Sufficiency
0.4 - mm EE  Relative error reduction

Error

0-0 r— T T *Tr ‘1™ """ "7 "“"’°T 7T ‘°"" ‘7T "*°'1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K
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Esug( Dk, &) := Z|S’+|P(Sl|5; do(Pa(S4) \ Dk = 0))

S’
0.5

E  Poslerior

s Expected Sufficiency
0.4 mm B Relative error reduction

Error

0-0 r—— T T *®T ‘1™ """ "7 "“"'° " 7T ‘""" ‘7T *+*°1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K
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Compare to 44 doctors not involved in creating medical cases

Standard Bayesian updating
places in top 48% of doctors,
achieving average clinical

daccuracy

Counterfactual inference places
In top 25% of doctors, achieving
expert clinical accuracy

49
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Posterior accuracy

Counterfactual accuracy

0.0 { Doctors vs. posterior ranking )
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48
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Vignettes

All |VCommon |Common [Uncommon | Rare | VRare
N 1671 131 413 546 353 | 210
Mean (A)|3.81 2.85 2.71 3.72 4.35| 5.45
Mean (C)|3.16 2.5 2.32 3.01 3.72| 4.38
Wins (A)| 31 2 7 9 9 4
Wins (C) | 412 20 80 135 103 | 69
Draws |[1228 131 326 402 241 | 137
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Compare to 44 doctors not involved in creating medical cases

Standard Bayesian updating
places in top 48% of doctors,
achieving average clinical

daccuracy

Counterfactual inference places
In top 25% of doctors, achieving
expert clinical accuracy
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Posterior accuracy

Counterfactual accuracy
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Accepted to:

1. Frontiers of Al-assisted Care symposium

2. Causal Machine Learning workshop at NeurlPS 2019 (selected as Spotlight)
arXiv: 1910.06772

Counterfactual diagnosis

Jonathan G. Richens,! Ciaran M. Lee.!»? and Saurabh Johri!

'Babylon Health, London, United Kingdom'
*University College London, United Kingdom

Causal knowledge is vital for effective reasoning in science and medicine. In medical diagnosis for
example, a doctor aims to explain a patients symptoms by determining the diseases causing them.
However, all previous approaches to Machine Learning assisted diagnosis, including Deep Learning
and model-based Bayesian approaches, do not distinguish correlation from causation. Here, we
propose a new diagnostic algorithm based on counterfactual inference which captures the causal
aspect of diagnosis overlooked by previous approaches. Using a statistical disease model, which
describes the relations between hundreds of diseases, symptoms and risk factors, we compare our
counterfactual algorithm to the standard Bayesian diagnostic algorithm, and test these against a
cohort of 44 doctors. We use 1763 medical cases created by a separate expert panel of doctors to
benchmark performance. Each medical case provides a non-exhaustive list of symptoms and medical
history simulating an instance of a single disease. The algorithms and doctors are tasked with

&0 Made with ™
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Knowing causal structure was crucial in the above.
How can we learn causal structure?

51 Made with .
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Learning causal relations between a set of variables is an incredibly
Important problem in science, medicine, economics

| would rather discover one true

cause than gain the kingdom of
Persia.

~ Democritus

How do we learn causal relationships?

52 Made with ™
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Gold standard are randomised controlled trials (RCTs)

» Asking people if they smoke and have health problems isn’t
enough to conclude smoking causes these problems

Health
problem ) OF _ pronen

* Need to force some to smoke and some not to, and look at
relative number of health problems between groups

53 Made with ™
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Much of the time RCTs are unethical

They can also be expensive—such as in drug trials—or
technologically unfeasable—such as with astronomical bodies

If we can’t perform RCTs, what do we do?

54 Made with ™
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« Causal Discovery algorithms provide an elegant approach to
this problem

 They employ assumptions about what it means for one variable
to cause another, aiming to capture the essence of the
“‘asymmetry” between cause and effect

Made with ™
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 Rough idea is that causal mechanism:
P( | cause),
IS “simpler” to describe than the acasual one:

P(cause | ).

- “Easier to smash a cup than to un-smash it,”

« Let's take a look at a simple example

56 Made with ™
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Brief example

Temp. on Earth

Solar radiation

57 Made with ™
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“Causal Mechanism”
P( | Radiation)

P( | Radiation)
roughly constant for
different Solar
radiation values

Temp. on Earth

Solar radiation

60 Made with ™
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“Acausal mechanism”
P(Radiation | )

P( | Radiation)
“simpler” to describe

. »

b than P(Radiation |
P(Radiation | ) g Temp), so algorithm
varies for different . outputs:
Temp. values g' pEIL

o)) Rad. >

—

Solar radiation

Different causal discovery algorithms quantify “simplicity” differently

(e.g. conditional kernel mean embeddings define norm over conditional distributions, variance quantifies simplicity)
61 Made with 0@
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What’s the causal direction?

250 1 ®
225 1
200 -
175 1

150 A

penmeter3

125 1
100 -

00 02 04 06 08 10
compactness3
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What’s the causal direction?

nmeter3

08 10
compactness3

63
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Soda Totally Turns Teens Into Killers
a- Anna North g O W 0 v ©

10/25/11 6:00PM + Filed to: HEALTH ~~ 95K 25 Save

Turns out soda isn't just bad for your teeth: if you're a teenager, it could make
you more likely to knife someone.

o |

o %
SN
May June July
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It turns out neither variable is a cause of the other

A B

« A, B could be diseases and T a risk factor

« This causal relationship is of a different kind than the “purely directed” relations
« Treating one observed variable will not “cure” the other

« Discovering causal structure important for diagnosis and treatment

66 Made with ™
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Actually there are 5 different causal structures between 2
correlated variables

A B
A B A B

67 Made with ™
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Actually there are 5 different causal structures between 2
correlated variables

) B A B
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Actually there are 5 different causal structures between 2
correlated variables

f B
A

N\
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Main Result

Given algorithm for distinguishing purely directed causal structures
A B A B

method turns it into one that can distinguish

B
A o A B A

While maintaining original accuracy in distinguishing purely directed
causal structures

70 Made with @
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Additive noise:

Common Cause (1) A = sin(107) + €T + 4
Exp. Algorithm Normal Uniform Expon. _ 8
: : 597 97% Bﬁlog(T—l—lO)—i—T. +npg
) modKCDC  96% 95% 0 (2) A = log(T + 10) + T + ns
modIGCI 99% 96%  99% 2 . 6
B=T“4+T"+ng.
modKCDC  98% 95%  96%

2 modIGCI 100%  100% 100%

Multiplicative noise:

CAN 80%  66% 100% (3) A= (sin(107) + *T)em
3 modKCDC 94% 99%  95% B = (17 +T6)enn. )
modIGCI 98%  96%  97% (4) A = (sin(10T) + €*")em
4, ~wodKCDC  95%  96%  96% B = (log(T + 10) + T°%)e"
modIGCI 96% 96% 97% Additive and Mulitplicative noise:
. modKCDC  97%  100%  95% _‘
modIGCI 95%  100%  94% (5) A =log(T +10) + 7% + ny
g modKCDC  96%  95%  96% B = (T?+T%e""
modIGCI 94% 9%6%  93% (6) A =sin(107) + €37 + ny
B = (T*+1T°%e"?
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Additive noise:

Common Cause (1) A = sin(107) + €T + 4
Exp. Algorithm Normal Uniform Expon. _ 8
_ ; =07 979 B:I()g(T—I—l(])—l—T. +ng
j modKCDC  96%  95% 0 (2) A= log(T +10) + T + n4
modIGCI 99% 9%6%  99% 2 . 6
B=T“4+T"+ng.
modKCDC  98% 95%  96%

2 modIGCI 100%  100% 100%

Multiplicative noise:

CAN 80%  66% 100% (3) A = (sin(10T) +€*")em
o modKCDC  94%  99%  95% B=(T*+T%e
modIGCI 98%  96%  97% (4) A = (sin(107) + e*")em
4, mwodKCDC  95%  96%  96% B = (log(T + 10) + T°%)e"
modIGCI 96% 96% 97% Additive and Mulitplicative noise:
- modKCDC ~ 97%  100%  95% __
modIGCI 95%  100%  94% (5) A = log(T + 10) + T + ny
g modKCDC  96%  95%  96% B = (T?+T%e"®
modIGCI 94% 96%  93% (6) A =sin(107) + €37 + ny
B = (T?+1T°%e"*
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Data from 2287 eighth-grade pupils (aged about 11) in 132
classes in 131 schools in the Netherlands tested language score
& socioeconomic status (SES)

Our algorithms can be used to find the true causal structure

—p Language Or
score

72 Made with ™
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Data from 2287 eighth-grade pupils (aged about 11) in 132
classes in 131 schools in the Netherlands tested
& socioeconomic status (SES)

Our algorithms can be used to find the true causal structure

G o
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Our work resulted in a new algorithm for detecting common causes

We presented our work at Frontiers of Al-assisted Care symposium, which was
held at Stanford in late 2019

arXiv: 1910.10174

Leveraging directed causal discovery to detect latent common causes

Ciaran M. Lee* Chris Hart Jonathan G. Richens Saurabh Johri
Babylon Health & Babylon Health Babylon Health Babylon Health
University College London

Abstract al. 2009; Shimizu et al. 2006; Janzing et al. 2012b;
Mitrovic, Sejdinovic, and Teh 2018; Louizos et
al. 2017; Janzing et al. 2012a; Goudet et al.
2017; Zhang and Hyvirinen 2009: Fonollosa 2016;

Causal knowledge is crucial to our understanding of
the world; it is a prerequisite to reasoning about the
effects of interventions and ascertaining the truth

of counterfactuals. As such, the discovery of causal Lopez-Paz et al. 2015.)' Howeverl_. most of these ap-
relationships is a fundamental problem in science. proacl!es deal only with purely directed causal rela-
In recent years, many elegant approaches to dis- tionships and cannot detect latent common causes.

covering causal relationships between two variables That is, given two variables A and B, these algo-

74 Made with &
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Some algorithms which can distinguish all 5, but these make
strong assumptions about causal models

A B
A B A B
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 Many medical studies only measure variables pertinent to the study,
due to ethical reasons.

 This results in many datasets measuring overlapping but not exactly
coinciding variables.

» Can we extract causal information from non-jointly measured
variables?

Example: If we have a study that shows relation between vitamin D
& obesity, and heart risk & obesity, can we learn if low vitamin D
contributes to heart risk?
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Dataset 1 : Dataset 2

X
3
1 -
X and Z are never jointly measured
7
5
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Dataset 1 : Dataset 2

X

3

1

7 Causal Discove
Causal Discovery Yy
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Dataset 1
X

A | N | =W
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Causal Discovery

I

Dataset 2
Causal Discovery
—’
“Fuse”
Datasets

U — —
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?
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Dataset 1
X

A | N | =W
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Causal Discovery

I

Dataset 2

“Fuse”
Datasets

I e e

S~

?

Causal Discovery

? arrow in contradiction with
learned V' e———p structure
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MIT Technology Review

An algorithm that can spot
cause and effect could
supercharge medical Al

The technique, inspired by quantum cryptography, would allow large
medical databases to be tapped for causal links
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Split into two and gave to
algorithms:

Previous SOTA: 61,740
Fraction correct edges: 40%

Our algorithm: 3
Fraction correct edges: 50%
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How efficient is counterfactual inference?
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How efficient is counterfactual inference?
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How efficient is counterfactual inference?

U
Standard counterfactual inference . l
‘ c

AN
\J/

—  Ahduction step

3.0 Prediction step

A

—
(g

Abduction: update
P(u,, u, U, U,) given
evidence

Median time per graph (scconds)

| 0 8 10) 12
Graph size (munber ol nodes)
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Efficient counterfactual inference with Twin Networks

Compute counterfactual

c @ u, c* Standard: P( D | D=T, do(A=F))
//\ / 1. Abduction
2. Action
A \ / B A* B* 3. Prediction
u, A /
D / D*

Twin: P(D* | D=T, A*=F )
Bayesian Inference on Twin network
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Optimising Twin Networks

NN s

\ ‘//u" / Not a priori clear that standard Bayesian

inference on network twice the size of
original is more efficient

U,
/ Nodes in counterfactual network that are
cC u u, ) .
not descendants of an intervention are
//\ / exact copies of the original node
A B A*
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Computational advantage of Twin Networks

Effect of graph size _ Effect of intervention topology

1.0

0.5

(1.0

—0.5

0.8

3 1 5 G 7 M 0 10 1 12 0.0 0,2 0.1 0.6
Topological position parameter of intervention ([V]| = 10)

/

Nunber of nodes (0% donsity )
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No sustained improvement in some cases

Effect of evidence topology Effect of evidenee size

£~
124
ElE
_'n;_f.

-(.5

1.0

0.1
93
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v
0.2

Topological position parameter of evidence gronp l|lu'| = 10)

03

“:l

v
0.5

0.6

& 1.0
5|3
S
2 05
‘"F_-‘-
=00
—0).9
0.7 0.8 0.9 0.1 0.2 0.3 0.1 0.5 0.6 0.7 0.8 0.9 1.0

Binomial parameter of fraction of nodes observed (V] = 10)

Effect of density
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No massive improvement in approximate inference cases

o —— Twin Comnterfactual
1.70 Standard Counterfactual

c ul llll C* 15O ::i :;‘:‘;:::\jll:ll'I.\“Iltl"(lia.n
=== Trne CF Valne
1.25
A B " A B*
le i
m / 075
\ . ‘// AD* -

i)
\_—-/ 000

Counterfactual
world

11
5.0 1.5 1.0 3.5 3.0
Estimated Counterfactual Value
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Slight improvement with merging

.c\
F
Absolute (
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Improvement when conditioning in counterfactual world

N,/

Counterfactual

/ “What would happen to the patient’s inflammation I* if | gave
/e the patient drug D* and they had a large response to it”
Uy —» R .

N —> Y

96 Made with ™

Pirsa: 20020066 Page 88/92



Accepted to
Causal Machine Learning workshop at NeurlPS 2019

Copy, paste, infer: A robust analvsis of twin networks
for counterfactual inference

Logan Graham Clarun M. L
I lon Health Babylon Health
& Un 1 [ aly College London

bal salth com

Yura Meroy
Babylon Healily

Abstract

@ method for estimating counterfaciyal viginally
ovar standand counterfacial mference How

LR et s uld e oty
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arXiv: 1910.08091 & Accepted to:
1. Advances in Approximate Bayesian Inference 2019
2. ProbProg, Probabilistic Programming Conference 2020
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MultiVerse: Causal Reasoning using Importance Sampling in
Probabilistic Programming

Yura Perov* | YURA.PEROVUBABYLONHEALTH.COM
Logan Graham* 1! LOGAN.GRAHAMGOBABYLONHEALTH.COM
Kostis Gourgoulias® KOSTIS. GOURGOULIAS @BABYLONHEALTH.COM
Jonathan G. Richens’ JONATHAN, RICHENSUBABYLONHEALTH.COM
Ciaran M. Lee! ¢ CIARAN.LEEQBABYLONHEALTH,COM
Adam Baker! ADAM.BAKEROBABYLONHEALTH.COM
Saurabh Johrif SAURABH.JOHRIQBABYLONHEALTH.COM
Abstract

We elaborate on using importance sampling for cansal reasoning, in particular for coun-
terfactual inference. We show how this can be implemented natively in probabilistic pro-
gramming. By considering the structure of the counterfactual query, one can significantly
optimise the inference process. We also consider design choices to enable further opti-
misations.  We introduce MultiVerse, a probabilistic programming prototype engine for
approximate causal reasoning. We provide experimental results and compare with Pyro,
an_existing probabilistic programming framework with some of causal reasoning tools.
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Conclusions and next steps

Developed new causal learning algorithms

Next steps: scale them up & start mining data for causal relations

Showed that counterfactual reasoning is useful in healthcare &
devised efficient ways of performing it

Next steps: start using this for healthcare simulations
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