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Abstract: We study the defect operator product expansion (OPE) of displacement operators in free and interacting conformal field theories using
replica methods. We show that as&nbsp;n approaches&nbsp;1 a contact term can emerge when the OPE contains defect operators of
twist&nbsp;da™ 2. For interacting theories and general states we give evidence that the only possibility is from the defect operator that becomes the
stress tensor in the& nbsp;naf’ 1 limit. Thisimpliesthat the quantum null energy condition (QNEC) is aways saturated for CFTs with atwist gap. As
a check, we show independently that in a large class of near vacuum states, the second variation of the entanglement entropy is given by a smple
correlation function of averaged null energy operators as studied by Hofman and Maldacena. This suggests that sub-leading terms in the the defect
OPE are controlled by a defect version of the spin-3 non-local light ray operator and we specul ate about the possible origin of such a defect operator.
For free theories this contribution condenses to a contact term that |eads to violations of QNEC saturation.
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Energy in Classical Field Theory

Classically the null energy is bounded from below (null energy condition)

Tz.r-‘:_.f i (au(b)Q >0

NEC is used crucially for important theorems in GR:

@ Hawking's area theorem for black holes, Az, > 0

@ Classical focussing theorem for light rays, A” <0

@ Singularity theorems
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Energy in Quantum Field Theory

Quantum mechanically, local energy density cannot be
positive. Follows from separating property of vacuum witten (2018)]

I
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Energy in Quantum Field Theory

Quantum mechanically, local energy density cannot be
positive. Follows from separating property of vacuum witten (2018))

However, lots of recent progress has been made connecting
constraints from causality, quantum information theory and chaos to
energy conditions.
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Averaged Null Energy Condition

Non-local bound on energy density

00
/ dv (Tyuly,u=0,v)} >0

— 00

Proven using a multitude of techniques

@ Monotonicity of relative entropy (Faulkner et al. (2016))

Srel(/)f\‘a#\) > Srel(ﬂl?‘(f{})_«. ADDB

e Causality in the lightcone limit and reflection positivity (related
tO ChaOS bOUﬂd) [Hartman et al. (2016)]

Ven Chandrasekaran (UC Berkeley) ' February 18th, 2020 4 /25
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A Local Quantum Energy Condition
Can we do better? Yes, the quantum null energy condition!

- l (Z (SJ.ST
Il?m! : 2 9\ W
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A Local Quantum Energy Condition

Can we do better? Yes, the quantum null energy condition!

_ 1 d S
<7?f.'r.r(;’/(})> >

= 21 d\ oV (yo) V(y;A)

S(R(N)) = =Trlprlogpr|, pr = Trg [¥) (V]

@ Conjectured: [Bousso et al.
(2015)]. Proofs: [Bousso et al.
(2015)], [Koeller and Leichenauer
(2015)], [Balakrishnan et al. (2017)]

@ General proof unifies both ANEC
proofs

@ Connects energy and entanglement

Ven Chandrasekaran (UC Berkeley) February 18th, 2020 5/25
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Second Variations of the Entanglement Entropy

(] (5 S
dAN \ OV (Y0) [y (o)

' . 52,5 d
— lri—.-!\ / — ¢ i V( l; A
far VoV ax M

Let's look at second variations of the entanglement entropy with respect
to the entangling surface position:

Ven Chandrasekaran (UC Berkeley) . ‘ February 18th, 2020 6/25
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Second Variations of the Entanglement Entropy

(] (5 iS’
AN\ OV (40) [y (o)

Let's look at second variations of the entanglement entropy with respect
to the entangling surface position:

(52 LST w,,
e = 5.
V(yvy') ™

(v/)8%92(y — o) + off-diagonal

e S” stands for the “diagonal” (local) variation of the entropy.
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Second Variations of the Entanglement Entropy

(] (5 S
AN\ OV (Y0) [y (o)

' l) SBJS'
= /ff«d_'“!/’- I ,
_ IV (yo)oV(y") d

Let's look at second variations of the entanglement entropy with respect
to the entangling surface position:

59
oV (y)oV (y')
e S” stands for the “diagonal” (local) variation of the entropy.
@ Strong sub-additivity, S(A) — S(AB) < S(AC) — S(ABC'), implies
that the off-diagonal second variations are non-positive.
e Diagonal QNEC: (T,,) > 3-S5

v

= S" ()0 %(y — ¢/') + off-diagonal

Ven Chandrasekaran (UC Berkeley) il February 18th, 2020 6/25

Pirsa: 20020061 Page 12/47



Saturation of the Diagonal QNEC

»Sr:,’“ — 271' <Tf?(!>

Result: The diagonal (local) QNEC is saturated for all states in all QFTs
with an interacting UV fixed point.

Ven Chandrasekaran (UC Berkeley) . [ February 18th, 2020 L [25
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Saturation of the Diagonal QNEC

»Sr:,’“ — zﬂ' <Tf?(!>

Result: The diagonal (local) QNEC is saturated for all states in all QFTs
with an interacting UV fixed point.

@ [nteractions are key: not saturated for free fields! [Bousso et al. (2015)]

Ven Chandrasekaran (UC Berkeley)
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Outline

Review of QNEC v

Vacuum modular Hamiltonians and the first law
Defect CFTs

Proof of saturation

Light ray operators and interplay with free theories

Future directions

Ven Chandrasekaran (UC Berkeley) | February 18th, 2020 8/25
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Vacuum Modular Hamiltonians

7 e X Viy) R
\
\
y A

For the sake of simplicity, let R be a half-infinite region such that the
entangling surface OR lies on the null plane u = 0.

Ven Chandrasekaran (UC Berkeley) _ February 18th, 2020 9/25
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Vacuum Modular Hamiltonians

Ly v\ R
Y
A Y
. :

For the sake of simplicity, let R be a half-infinite region such that the
entangling surface OR lies on the null plane u = 0.

Modular Hamiltonian: pr = %(?_K'R- —> K = —logpr

[Casini, Teste and Torroba, (2017)]

0 I&:
(KR)y =27 / d?~%y / - )d'“ (v = V(@) (Tw(u = 0,v,9)),
. JV(y,
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Vacuum Modular Hamiltonians

1 s R V(y) R
\
\
y s

For the sake of simplicity, let R be a half-infinite region such that the
entangling surface OR lies on the null plane u = 0.

Modular Hamiltonian: pr = %(?_K'R- —> Kp = —logpr

[Casini, Teste and Torroba, (2017)]

I&:

(), =2m [ @ [ dv (o= V() Twlu=0,0.9),

SV (y)
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First Law of Entanglement Entropy

Two facts

@ Second variation of modular Hamiltonian:
52
oV (y)oV(y')

@ First law for near vacuum states:

(K3, = 21 (Tou(y)),, 64D (y — o)

0S =9 (B',}gc>

< linear in state piece of entropy is modular Hamiltonian

Implication for near vacuum states:

Can we use this as a guiding principle for a general proof?

Ven Chandrasekaran (UC Berkeley) ‘ February 18th, 2020
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Two facts

@ Second variation of modular Hamiltonian:
52
oV (y)oV(y')

@ First law for near vacuum states:

(K3, = 21 (Tou(y)), 64D (y — o)

0S =9 (B',}gc>

< linear in state piece of entropy is modular Hamiltonian

Implication for near vacuum states:
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A Detour into Defect CFTs

A simple line of logic

@ We want to take limit of two variations as they approach each other
< zooming in to arbitrarily small regions of a general state

Ven Chandrasekaran (UC Berkeley) : February 18th, 2020 11/25
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A Detour into Defect CFTs

A simple line of logic

@ We want to take limit of two variations as they approach each other
< zooming in to arbitrarily small regions of a general state

@ Intuitively, general state should look like near vacuum state when
looking at local patches
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A Detour into Defect CFTs

A simple line of logic

@ We want to take limit of two variations as they approach each other
< zooming in to arbitrarily small regions of a general state

@ Intuitively, general state should look like near vacuum state when
looking at local patches

@ Can mock this up formally by looking at contact terms in operator
product expansions (OPE)
—» OPE data is universal

Ven Chandrasekaran (UC Berkeley) February 18th, 2020 11/25
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Replica Trick

Use replica trick to compute entropy

S(p) = — 11111l I Tr(py,]

Compute partition function on n-sheeted branched (replica) manifold and
analytically continue in n

Ven Chandrasekaran (UC Berkeley) February 18th, 2020
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Twist Defect

Framework

@ Branched manifold can alternatively be represented by a
codimension-2 (non-local) twist defect 7,, on OR after orbifolding the
CFT®" under Z,,

@ This allows us to apply standard CFT considerations to the original
manifold R? but now in the presence of 7,,.

Ven Chandrasekaran (UC Berkeley) February 18th, 2020 13/25
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Defect OPE

[Balakrishnan, Faulkner, Khandker and Wang (2017)]

@ Twist defect breaks full conformal symmetry down to SO(2) x SO(d — 2)
— ambient operator close to the defect turns into infinite sum of local
defect operators (bulk to defect OPE)

Ven Chandrasekaran (UC Berkeley) il February 18th, 2020 14 /25
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Defect OPE (cont.)

To be more explicit, choose complexified lightcone coordinates around the
defect (w = v on Lorentzian section)

D) ’2
ds® = dwdw + dy

Then bulk to defect OPE is

n—1

lim ZC)( (f’ w, U)Tn

w{—0)
[wl=0120

~(Ao+0) 5~ (Ao —lo) Z w it 25(85=6)120 ()7,

J

We can extract each defect operator via a residue projection,

’.u|’*&{'+f7n

. ‘ ) du' . ‘
Ou(0) 1, = _3’111_&0 i % t+la Z O(“ (w, | .-"3/'((), 0)7y

k=0
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Displacement Operator

Since we are interested in energy density, let's bring the stress tensor close
to the defect. Its defect spectrum contains a spin 1 operator

n—1

o(y) = Z % dw T{E,“, L Y)

k=0

Displacement operator: defect local operator corresponding to
entangling surface deformations

— follows from equivalent local definition

4 <T,,_r[}£_,,(;lj)> - 65)7{’—(“?‘ w) <T'” Ij”(i{j)>

Ven Chandrasekaran (UC Berkeley) | February 18th, 2020
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Computing Shape Variations of Entanglement Entropy

Displacement operator can be used to compute variations of the n-sheeted
orbifold partition function:

1 . . 528
11 — ..Q["Du_? f Du_n Yy LS .Id’ ) "
”1_1311 (” - l) <Tn, (U) (U )> <Tn.> (5L"Y('fj)(b"'r('!j’)

Look at the OPE of DD with itself:

. - - ) - ! (-"n.('h)-t.f.'u.r(:{/)
[Du_:] — d - l-_. D'H_.?(.U)D'fﬂ(!./ ) ~ z I:fj - y”d—z*{‘(d—Ac)(”))

Where's the delta function?

Ven Chandrasekaran (UC Berkeley)
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General CFT Proof

Consider the following delta function representation:

. (n—1)
im _
n—o1 |y — g |42+ (n— L)

~ 8Dy — o)

Hence if ¢, ~ ¢ (n —1)*+ ... and Ap(n) ~d+~'(n—1) + ...

€

1 ~ A, A ld_DY,
= lim ] Dyu(y)Dgp(0) D O,,.,,.(;{/)()(d*“)(e} — )

n—1 1 —

This means Qg needs to have spin 2 and dimension d as n — 1

Ven Chandrasekaran (UC Berkeley) [ ‘ February 18th, 2020 18 /25
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General CFT Proof

Consider the following delta function representation:

n — 1
lim (” )

_ ~ 5((!—3) T f{l
n—1 ’y — «U/I(I—LE—{—-*,-’(-H,—I) ¢ (! ) )

Hence if ¢, ~ ¢ (n —1)*+ ... and Ap(n) ~d+~'(n—1) + ...

€

1 ~ A, A ld_DY,
= lim ] Dyu(y)Dgp(0) D O,,.,,.(;{/)()(d*“)(e} — )

n—1mn —

This means Qg needs to have spin 2 and dimension d as n — 1
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Eliminating the Possibilities

Lead'ng Ol’der A/ = AC) — ("C) + FIJ —l— C)(H e l) [Balakrishnan, Faulkner, Khandker and Wang

(2017)]

@ Spin 2 defect operator induced by spin 1 primary saturating the
unitarity bound, but charged operators cannot appear in entropy

Ven Chandrasekaran (UC Berkeley) i} February 18th, 2020 19 /25
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Eliminating the Possibilities

Leading order Al - A(;) — .FC) + .F'j + O('H. — l) [Balakrishnan, Faulkner, Khandker and Wang
(2017))
@ Spin 2 defect operator induced by spin 1 primary saturating the
unitarity bound, but charged operators cannot appear in entropy
@ [ = 2 higher spin displacement operators from lowest twist higher spin

primaries

n—1

g J—=3
W (k)
A ———— E N
, || (n) i

k=0

but Ay =71, + 2+ O(n — 1) > d for CFTs with a twist gap
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Eliminating the Possibilities

Lead'ng Ol’der A/ - AC) — ("C) + FIJ + C)(H - l) [Balakrishnan, Faulkner, Khandker and Wang
(2017))
@ Spin 2 defect operator induced by spin 1 primary saturating the
unitarity bound, but charged operators cannot appear in entropy
@ [ = 2 higher spin displacement operators from lowest twist higher spin
primaries

n—1

g J—=3
W (k)
A ———— E N
|| (n) i
) k=0

but Ay =71, + 2+ O(n — 1) > d for CFTs with a twist gap

@ Nonlocal defect operators arising from non-commutativity of n — 1
and OPE limits ... let's come back to this

Ven Chandrasekaran (UC Berkeley) i i February 18th, 2020 19 /25
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Stress Tensor Prevails

Thus, only option in an interacting CFT with twist gap: | Tww

Use diffeomorphism Ward identity in the presence of replica defect:

~

/ (ﬁdigwarn IA)“_,(;{/I) l)u.r(f/)rljuw,'(”-’a w, 0)) — 78:1” <Tn I-T)u' (;{/)rlju.rm(“’a w, 0)>

Ven Chandrasekaran (UC Berkeley) - February 18th, 2020 20/25
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Stress Tensor Prevails

Thus, only option in an interacting CFT with twist gap: | Tww

Use diffeomorphism Ward identity in the presence of replica defect:

~

/ (ﬁdigwarn IA)“_,(;{/I) l)u.r(f/)rljuw,'(”-’a w, 0)) — 78:1” <Tn I-T)u' (;{/)rlju.rm(“’a w, U)>

Computing both sides to O(n — 1) we find desired behavior of ¢,, and
A()('N-) fOI’ ([l,r-m

Ven Chandrasekaran (UC Berkeley) February 18th, 2020 20/25
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Nonlocal Defect Operators

Directly compute leading spectrum of D x D OPE in n— 1 limit:
<T-n. IA)H:(L’/I _)IA)NJ(;UB)Ih)'m(yli) IA)NJ('U-'I )> ~ ('”- - ])<£‘m(y| )éuz(y'ﬂ )gu.r(;’/li)S-frf(y-'l )>

where £; and &, are half and full ANEC operators.
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Nonlocal Defect Operators

Directly compute leading spectrum of D x D OPE in n — 1 limit:
<T-n. IA)-NJ(;UI )IA) m(;’/‘.!)li)-m(lflii) Ii)u!(y-'i )> il ('”' -1 )(‘Sm(yl )ém(y'ﬂ )ém(yli)S-frf(y-'l )>
where £; and &, are half and full ANEC operators.

OPE of ANEC operators = sum over spin 3 non-local light ray operators:

ciQi(y2)

guf(!ﬂ )(:“r(f/‘.-l) ~ Z :

2(”"_2)_ r(:ven..ff.‘i

= |y1 — y2

f- - . - ,‘ .
where 7. .. ;_3 is twist of even .J primary on ith Regge trajectory
analyt|ca”y Cont|nUEd dOWﬂ tO -] - 3 [Hofman, Maldacena; Kologlu, Kravchuk, Simmons-Duffin,

Zhiboedev]
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Nonlocal Defect Operators

Directly compute leading spectrum of D x D OPE in n — 1 limit:

(70 Dis (1) D (y2) Duo (913) Do (ya)) ~ (1 = 1w (t1) €t (92) 0 (413) € (y4))
where £; and &, are half and full ANEC operators.

OPE of ANEC operators = sum over spin 3 non-local light ray operators:

ci Qi (y2)

guf(!ﬂ )(:“r(f/‘.-l) ~ Z :

2(”"_2)_ r(:ven..ff.‘i

= |y1 — y2

where Téveml:3 is twist of even .J primary on ith Regge trajectory

analyt|ca”y Cont”"..IEd dOWﬂ tO -] - 3 [Hofman, Maldacena; Kologlu, Kravchuk, Simmons-Duffin,

Zhiboedev|

>d—2

No delta function contribution for CFTs with twist gap 7¢,e, /_3 >

Ven Chandrasekaran (UC Berkeley) T | February 18th, 2020 21/25
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Further Evidence: Near Vacuum States

Consider near vacuum state [¢)) = |0) + £O|0) + O(¢?) and directly
compute second derivative of relative entropy using perturbation theory:

(52 iS’rel
SV (y1)8V (y2)

dse® (C) g_” ('Ul ) g“ ('!_/2 ) ({.i s vac C))

Ven Chandrasekaran (UC Berkeley) | February 18th, 2020 22 /25
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Further Evidence: Near Vacuum States

Consider near vacuum state [¢)) = |0) + £O|0) + O(¢?) and directly
compute second derivative of relative entropy using perturbation theory:

(52 Sre|
OV (y1)0V (y2)

dse® (C) g_” ('Ul ) g_” ('!_/2 ) ({.i s vac C))

— Spin 3 light ray operator contributes to entropy variations

Free theories: unitarity bound is saturated &, (y1)E, (12) ~ 692 (y; — 1)

QNEC is not saturated in free theories! [Bousso et al. (2015)]
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Weakly Interacting Theories

How does () disappear from delta function piece as we turn on a small
interaction with coupling A7

Ven Chandrasekaran (UC Berkeley) - February 18th, 2020 23/25
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Weakly Interacting Theories

How does ( disappear from delta function piece as we turn on a small
interaction with coupling A?

We saw that in the free limit, () comes from spin 3 light ray operator.

This is not a protected operator, so it picks up an anomalous dimension
A ~ d+ O(X) which smears it out!

Ven Chandrasekaran (UC Berkeley) ‘ February 18th, 2020 23 /25
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summary

Deftect CFT framework s a powertul tool for analyzing entanglement
entropy variations

® S5/ 2m (1 for general states in all interacting CFTs

Ven Chandramebowan (U0 Barkal oy
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Future Directions

Relation to continuous spin ANEC [Simmons-Duffin et al, (2018)]
» Is there a continuous spin QNEC?

Non-null variations — saturation of quantum dominant energy
condition [Wall, (2017)]?

What is energetic part of entanglement entropy for general states in
interacting theories?

Conjecture: nonlocal defect operator = infinite resummation of
higher spin displacement operators

Ven Chandrasekaran (UC Berkeley) e TR February 18th, 2020 25/25
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