Title: PSI 2019/2020 - Quantum Matter Part 2 - Lecture 2

Speakers: Alioscia Hamma

Collection: PSI 2019/2020 - Quantum Matter (Part 2)

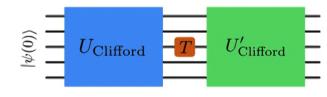
Date: February 12, 2020 - 10:00 AM

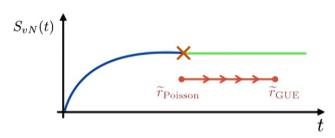
URL: http://pirsa.org/20020046

Pirsa: 20020046 Page 1/10

What is Quantum Complexity? part 2

ALIOSCIA HAMMA

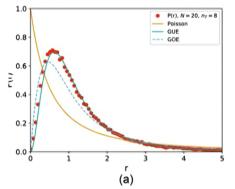


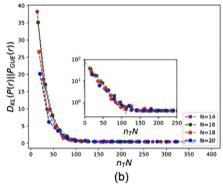

PSI - Quantum Matter February 2020

Pirsa: 20020046 Page 2/10

TRANSITION TO QUANTUM COMPLEXITY BY DOPING WITH T GATES

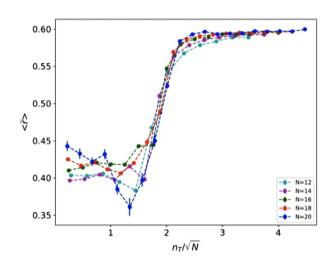
- We place n (possibly just one) T gates sandwiched by Clifford circuits
- n=0 will be just a Clifford circuit: ESS will be Poisson
- Can we drive a transition to Universal (GUE) ESS?
- Is integrability immediately destroyed?
- What does Universal GUE correspond to?


Pirsa: 20020046


RESULTS

$$r_k = rac{\lambda_{k-1} - \lambda_k}{\lambda_k - \lambda_{k+1}} \left(egin{array}{c} \lambda_{0.55} \\ \lambda_{0.55} \\ \lambda_{0.45} \\ \lambda_{0.45} \\ \lambda_{0.35} \\ \lambda_{0.30} \\ \lambda_{0.25} \\ \lambda_{0.25} \\ \lambda_{0.25} \\ \lambda_{0.25} \\ \lambda_{0.30} \\ \lambda_{0.25} \\ \lambda_{0$$

- A single T gate can drive to universal ESS
- Therefore irreversibility and unlearnability ensue
- Operator spreading and scrambling are involved
- the fate of T-designs and entanglement fluctuations depends on this transition

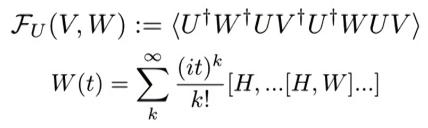


A QUANTUM KAM, THE ONSET OF QUANTUM CH

$$(T^\dagger) U_{\hbox{Clifford}} \, T \, U_{\hbox{Clifford}}^\dagger$$

- There is a threshold ~sqrt{N} before Clifford goes into chaos
- This quantity is akin to a OTOC

$$|\Psi\rangle = \sum_{x_A, x_B} \Psi(x_A, x_B) |x_A x_B\rangle$$

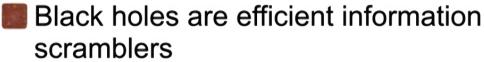


$$|\Psi(x_A,x_B)|^2 \stackrel{60}{\underset{30}{\downarrow_{0}}} \stackrel{40}{\underset{20}{\downarrow_{0}}} \stackrel{10}{\underset{10}{\downarrow_{0}}} \stackrel{10}{\underset{20}{\downarrow_{0}}} \stackrel{10}{\underset{10}{\downarrow_{0}}} \stackrel{10}{\underset{20}{\downarrow_{0}}} \stackrel{10}{\underset{30}{\downarrow_{0}}} \stackrel{10}{\underset{30}{\underset{30}{\downarrow_{0}}}} \stackrel{10}{\underset{30}{\underset{30}{\downarrow_{0}}}} \stackrel{10}{\underset{30}{\underset{30}{\downarrow_{0}}}} \stackrel{10}{\underset{30}{\underset{30}{\underset{30}{\downarrow_{0}}}}} \stackrel{10}{\underset{30}{\underset{$$

CLASSIFICATION BY MACHINE LEARNING

Pirsa: 20020046 Page 6/10

The 4-point out-of-time-order (OTO) correlation function for the local operators V, W evolved by a RQC U is given


for $k \sim 2N/q$ we get 2^{2N} terms with similar non-negligible weight

For a chaotic circuit, the value of the $\mathcal{F}_U(V, W)$ reaches the value where $U^{\dagger}WU \mapsto \int dUU^{\dagger}WU$

Does the OTOC $\mathcal{F}_U(V, W)$ transitions from non-chaotic to chaotic behavior for a RQC doped by T gates? If yes, with what scaling n_T ?

Out of Time-Order Correlators

)

- Information initially localized will quickly thermalize and mix across the full system
- Fastest scrambling = random unitary evolution
- Chaotic dynamics => scrambling

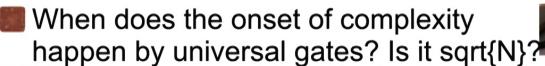
SCRAMBLING AND BLACK HOLES

(

Pirsa: 20020046 Page 8/10

$$\frac{1}{K} \sum_{j} p_t(U_j) = \int dU p(U)$$

Unitary t-design


$$\Phi_t(\{U_j\}) = \frac{1}{K^2} \sum_{jk} |\langle U_j | U_k \rangle|^{2t}$$
 Frame Potential

 Φ_t is a t-design iff $\Phi_t = t!$

TRANSITION IN DESIGN

 $\overline{}$

Pirsa: 20020046

What is the role of time fluctuations of the entropy in the effectiveness of cooling?

When does the unlearnability transition happen?

When does the transition to 4-designs happen?

Can you dope anything to a 4-design?

Can you dope Clifford to Universal by sqrt{N}?

QUESTIONS

Pirsa: 20020046 Page 10/10