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B Why does the gas prefer to be in
equilibrium, that is, to look like the
snapshot on the right?

B This question is very subtle already in
classical physics

WHY DOES ENTROPY INCREASE?
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B Unitarity = Time Reversal

B Entropy is constant with unitary evolution

B Entanglement Entropy is not!

B Does increase in entropy mean
irreversibility?

B Where does irreversibility come from?

B Irreversibility is a feature of Quantum
Complexity

IRREVERSIBILITY IN QUANTUM PHYSICS
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B There are two ways of approaching ths P =
notion of quantum complexity y &l

B 1. (Bennett, Susskind) complexity
relative to a fiducial state as the least
number of elementary operations needed
to make that state.

B If a quantum evolution is ergodic, it can
eventually reach complex states: Gibbs
POV

B 2. (this talk) The state is complex if it
belongs to a large equivalence class, i.e.,
it is hard to tell it apart from many other
states: Boltzmann POV

WHAT IS QUANTUM COMPLEXITY?
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B The equivalence class is a Phase

B We consider equivalent all those states
that can be connected by a (finite depth)
quantum circuit

B This is a new way of classifying quantum
phases

QUANTUM COMPLEXITY AS A PHASE
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B If two states are connected by a
quantum circuit of finite depth, they are
In the same phase. This is called a
topological phase

B If we constrain the gates to have a
specific symmetry, the phase diagram
splits in phases with different
symmetry breakings

[

Quantum Phases and Symmetry Breaking
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B We need to define constraints to the
gates we use

B For instance, if we use only Clifford
gates, these are free resources, and we
have a certain quantum complexity class

B This way of classifying quantum phases
IS more general: a ferromagnetic state
and a non trivial topological state can be
connected by just Clifford gates. They
both have low quantum complexity

B What are the complexity ‘order
parameters’?

QUANTUM COMPLEXITY PHASES
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B Complexity of Entanglement

B t-Design

B Machine learning approach to
classification

B Simulability and resources

COMPLEXITY ORDER PARAMETERS
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RESOURCES

e NOT gate: flips the state of the qubit

0) — |1) and |1) — |0)

e H (Hadamard) gate:

0) — 1= (10} + |1) and |1) — L= (|0} — |1))
e Phase gates Pys: gives a state dependent phase
0) = |0) and |1) — €*°|1)

The phase gate with 6 = 7 /4 is called T
The phase gate with 6 = 7/2 is called S.
e CNOT gate or controlled-NOT gate:
|00) — |00), |01) — |01)

110) — |11), |11) — |10)
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B States are complex if their entanglem| " il
IS complex

B This means that it is very difficult to
distinguish them from many other
entangled states

B The landscape of entanglement would
have many local minima

B Trying to disentangle a state would be
hard

QUANTUM COMPLEXITY AND
ENTANGLEMENT
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RANDOM QUANTUM CIRCUIT (RQC

B CONSIDER A SYSTEM OF N SPINS 1/2 INITIALIL|
A PRODUCT STATE

® WE DRAW SOME RANDOM GATES BETWEEN RANDOM
QUBITS AND MONITOR THE ENTANGLEMENT
(HEATING)

@ AT SOME POINT THE ENTANGLEMENT BECOMES
MAXIMAL AND EQUILIBRATES

@ THEN WE TRY TO REVERSE THE EVOLUTION AND
DISENTANGLE THE STATE (COOLING)
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UNIVERSAL AND NOT SETS OF GATE

B (H,CNOT,S) dense in Clifford Group, NOj S

UNIVERSAL
B (H,CNOT,NOT) = NOT UNIVERSAL

B (H,CNOT,T) = UNIVERSAL
B Entanglement Heating by RQC

CNOT + H + NOT CNOT +H+§ CNOT+H+T

[} 1 1 1 1 () 1 1 1 1 ‘) 1 1 1 1
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
gate # gate # gate #
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Reversing the evolution: Disentangling the s

Metropolis algorithm:

(1) Compute the entanglement entropies (all bipartitions)
e (2) Choose a gate randomly

* (3) Apply the gate

* (4) Recompute the entanglement entropies

* |f entropies are reduced, add gate to reverse list

, If entropies increase, keep gate with Boltzmann
probability or discard it and go back to (2)

» (5) Stop when entanglement entropies are zero
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STATISTICAL COMPLEXITY

Be {p;} the populations of the reduced density
Pi—1 — Pi R
r, = -
" pi— DI P(r) =R Z<5(7‘ — 7))
I=1

B Complexity as adherence of the statistics
of the gaps to random matrix theory

1 (,r + ,r.2)[:? 1

i = Ppoisson(T) = 77——3
Operator Set Level Spacing Statistics | Reversible?
{CNOT,H,NOT} Poisson Yes
{CNOT,H, S} Poisson Yes
{CNOT,H,T} GUE No
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IRREVERSIBILITY AND COMPLEXIT

B Irreversibility arises not just because there are ma
ways of entangling vs few ways of disentangling.

B Even with active disentangling (Metropolis) it may be
difficult

B Complex entanglement means that searching for a
disentangler requires exhaustive search

B Complex entanglement is a property of the statistics of
the entanglement gaps.

B Simple entanglement means that a disentangler can be
found by some principle (annealing)

B This also characterizes universal computation as ergodic
and non-universal as non complex
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TRANSITION TO QUANTUM COMPLEXITY B
DOPING WITH T GATES

!
UGlifford
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We place n (possibly just one) T gates
sandwiched by Clifford circuits

n=0 will be just a Clifford circuit: ESS
will be Poisson

Can we drive a transition to Universal
(GUE) ESS?

Is integrability immediately destroyed?
What does Universal GUE correspond
to?
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0 20 40 60 0 20 40 60 0 20 40 60

state (1) state (2) state (3)

@ 1) Clifford gates
B 2) Cliffort gates + Sqrt(N) T gates
@ 3) Random unitaries

CLASSIFICATION BY MACHINE LEARNING
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