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Abstract:

Beginning with the landmark gravitational wave detections by LIGO/Virgo, we have been gaining an unprecedented view of the dynamics of
strongly curved spacetime originally predicted by Einstein. Enabling and motivated by these observations, there has been rapid development in the
theoretical and computational tools we use to understand and interpret the nature of gravity and matter in this regime. Thisis essential to fulfilling
the promise of gravitational wave astronomy to not only be a new window on the astrophysics of black hole and neutron star mergers, but also to be
a unique probe of fundamental physics. | will illustrate this, highlighting the example of how black holes can be used to search for new particles.
The same theoretical tools also allow us to push Einstein's theory to the extreme in search of the limits of its predictability, for example testing
cosmic censorship, the idea that the breakdown in Einstein's equations associated with unhalted collapse is always hidden behind a black hole
horizon. | will describe some recent work resolving along-standing putative counterexample to this conjecture.
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Revealing a new population of binary black holes

Masses in the Stellar Graveyard

Caltech/MIT/LIGO Lab
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Latest neutron star merger GW190425

— x < 0.89
Y < 0.05
Galactic BNS

395 3.50

LIGO/VIRGO Collaboration et al. (2020)
Total mass of binary neutron star system is large compared to
those in our galaxy.
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What will LIGO see?

Primary sources are mergers of compact objects:

@ Black hole-black hole mergers (Seen a number)

@ Neutron star-neutron mergers (Seen two. .. probably)
@ Black hole-neutron star mergers (Hints from public alerts)

Other possible sources:

@ Stars collapsing and going supernova

@ Stochastic gravitational waves, from early universe or
otherwise

@ ...Surprises!
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How do we know what gravitational wave signals to
expect/look for?

Need to solve Einstein equations for orbiting/merging/oscillating
strongly gravitating systems

@ Solutions for stationary individual black holes/stars are
easy

@ Various approximations when things aren’t moving too fast,
etc.

@ At merger, these all breakdown. Need to solve full
nonlinear equations.

Essential to making and testing predictions for gravitational
wave sources.
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Going from. ..
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1=12.96 ms
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s
1.00e+12 1.00e+15 gm/cm™3

WE+ 2019

Pirsa: 20020022 Page 12/107



t=17.22 ms

s
1.00e+12 1.00e+15 gm/cm™3

WE+ 2019

Pirsa: 20020022 Page 13/107



1=19.05 ms
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1=30.68 ms

s
1.00e+12 1.00e+15 gm/cm”3

WE+ 2019

Pirsa: 20020022 Page 19/107



Pirsa: 20020022

Exploring the Dynamics of Spacetime

@ How can we make predicitions when gravitational collapse
gives rise to singularities? (Cosmic Censorship)

@ What can gravitational waves teach us about fundamental
physics? E.g. new particles, extreme densities, dark
matter. (Black hole superradiance)

Return to neutron stars at the end. ..
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Cosmic censorship

Unhalted gravitational collapse leads to singularities where
Einstein’s theory breaks down, but can this be ignored?

Weak cosmic censorship conjecture: Excluding regions
hidden from far away by black hole horizons, General Relativity
generically retains predictability.
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Cosmic censorship conjecture

Excluding higher dimensions (Lehner & Pretorius) or fine-tuned
configurations (Choptuik critical collapse) has been tested and
found to hold in a variety of configurations.

Figueras et al. (2016)

However, back in the 90s. ..
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Ehe New YJork Times

SUNDAY, MARCH 10, 1991

COMPUTER DEFIES
EINSTEIN'S THEORY

Findings of Simulation Stun
Scholars Who Considered
the Results Impossible

By JOHN NOBLE WILFORD

A supercomputer at Cornell Univer-
sity, simulating a tremendous gravita-
tional collapse in the universe, has
startled and confounded astrophysi-
cists by producing results that should
not be !Joumle according to Einstein’s
general theory of relativity

Scientists saild the simulation may
have exposed a flaw in at least one
aspect of Einstein’'s theory on the

vior of space, time, matter and
gravity. Or maybe not. They said fur-
ther research and testing could still re-
solve the issue in Einstein’s favor. Or
maybe not.

In the simulation of Einstein's
theory, the computer revealed that if
gigantic cloud of particles, shaped like
a football gravitationally, collapses on
itself, the regions near the end points
will condense into areas of infinite den-
sity and gravitational force. Scientists
may be able to contemplate them, but
nature is not supposed to be able to

nravhics thease resinns that asirmnhvei-
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VOLUME 66, NUMBER 8 PHYSICAL REVIEW LETTERS 25 FEBRUARY 1991

Formation of Naked Singularities: The Violation of Cosmic Censorship

Stuart L. Shapiro and Saul A. Teukolsky
Center for Radiophysics and Space Research and Departments of Astronomy and Physics,

Cornell University, lthaca, New York 14853
(Recewed 7 September 1990)

We use a new numerical code to evolve collisionless gas spheroids in full general relativity, In all cases
the spheroids collapse to singularities. When the spheroids are sufficiently compact, the singularities are
hidden inside black holes. However, when the spheroids are sufliciently large, there are no apparent hor-
izons. These results lend support to the hoop conjecture and appear to demonstrate that naked singulari-
ties can form in asymptotically flat spacetimes,

PACS numbers: 04.20.0b, 95.30.5(, 97.60.L1

Studied collapse of spheroidal cloud of collision particles
(Einstein-Vlasov equations).

Evidence put forth against cosmic censorship:
@ Curvature blows up in vacuum region—not a matter caustic

@ No apparent horizon found and no turn around of null
geodesics in vicinity before calculation ends
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Einstein-Vlasov System

AKA collisionless Boltzmann or cold dark matter
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Cosmic Censorship vs. Hoop Conjecture

Collapse of prolate spheriod with
e=/1-a?/b?=0.9and b/M =10

Cosmic Censorship: Singularities arising from gravitational
collapse should be hidden behind horizons.

Hoop Conjecture: A black hole forms if and only if a mass M
fits within a hoop of circumference C < 47 M
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This work

Number of works following up on Shapiro and Teukolsky (> 300
citations) including using higher resolution, extending to 3D,
etc., but definitive answer to whether CC is violated still elusive.

This work WE (2019):
@ Reuvisit such configurations using modern numerical GR

techniques (different gauge, adaptive mesh refinement,
etc.).

@ Main result: Final state in all cases studied is a black hole
with gravitational radiation.
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Density (with gravitational waves in gray scale) for increasing
values of semi-major axis b
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Density (with gravitational waves in gray scale) for increasing
values of semi-major axis b
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Black Hole Horizon Circumferences
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Gravitational waves

b/ M =2
b/M =6
b/ M= 10
b/ M =14

-
. -

e =
T L e

Gravitational wave energy up to ~ 1.5% total spacetime mass.
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Matter caustic

— Low Res.
— Med. Res.
— High Res.

Matter density p and Kretschmann scalar | = Ra°9R,, ., for
b/M=10and e = 0.9.
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Resolution

@ No longer “startled and confounded": final state of
spheroidal collapse is a black hole.

@ Neither cosmic censorship nor the hoop conjecture appear
to be violated.

@ Violent collapse is imprinted in strong gravitational
radiation.
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Gravitational wave probe of new particles

i ‘ndard Model
Coupling to '

standard Experimentally
model probed/excluded

\xions, dark
hotons?

Mass/energy scale

Search new part of parameter space: ultralight particles weakly
coupled to standard model
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Black holes superradiance

@ For a black hole with an impinging wave (electromagnetic,
gravitational, etc.) with frequency w
dArea x (SMH][U — HTQBH/LLJ)

@ Black hole thermodynamics:

dArea o 0Entropy > 0

Hence Mgy < 0 when w < mQgy.

@ Rotational energy of black holes can be liberated: up to
29% of black hole’s mass for maximally spinning!
(Eml =M — Mir)
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Black holes superradiance

Incoming wave is blue, outgoing wave is red; 120% efficient

WE+ (2013); Visualization: Ralf Kahler
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Black holes superradiance
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Black hole bomb

Massless particles (photons, gravitons, etc.) only interact once.
But surround a black hole with a mirror. . .

...create a black hole bomb. (Press & Teukolosky 1972)
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Superradiant instability: realizing the black hole bomb

@ Massive bosons can form bound states, when frequency
w < My grow exponentially in time.

@ Search for new ultralight bosonic particles (axions, dark
massive “photons," etc.) with Compton wavelength
comparable to black hole radius (Arvanitaki et al.)

=03 =104 ji=0.5
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Massive vector field energy density

WE (2018)
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Massive vector field energy density

WE (2018)
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Massive vector field energy density
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Massive vector field energy density
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Massive vector field energy density
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Massive vector field energy density

WE (2018)
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Massive vector field energy density

WE (2018)
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Superradiant instability: spinning down a black hole

Black hole with initial spin a = 0.99.
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WE & Pretorius (2017)

Vector boson mass: ~ 1072 eV (ji/0.25)(30M., /Mzy)
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Boson clouds emit gravitational waves

WE (2018)
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Boson clouds emit gravitational waves

WE (2018)
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Boson clouds emit gravitational waves
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Boson clouds emit gravitational waves
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Boson clouds emit gravitational waves
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Boson clouds emit gravitational waves

WE (2018)
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Gravitational wave signal
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Listening to the beat

@ Fundamental and overtone
modes simultaneously
populated

@ Slightly different frequency
leads to beat (lower
frequency) gravitational
wave signal

Siemonsen & WE (2020)

Hyperphysics
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Boson clouds emit gravitational waves
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Siemonsen & WE (2020)

@ Look for either stochastic
or resolved sources with
LIGO (Baryakthar et al.
2017; Brito et al. 2017)

@ Can “follow-up" black hole
merger events

@ Signals motivate new
searches: stay tuned. ..
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Binary neutron star merger or black hole-neutron star
merger

@ How do we know an event is a binary neutron star merger
and not one involving a black hole?

@ Can we rule out an exotic population of low mass
(1 — 3 M) black holes?

MR Cravitational-wave time-frequency map

Frequency (Hz)

—4 -2 0

Time from merger (s)

LIGO/VIRGO Collaboration et al. (2017)
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Endoparasitic black holes inside neutron stars

Tiny (< 1078 solar mass) black hole inside spinning
neutron star

Could arise due to asymmetric dark matter particle or
primordial black hole capture

Invoked to solve astrophysical puzzles: fast radio bursts,
r-process material, missing pulsars

Observational signatures depend crucially on dynamics of
angular momentum distribution
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Endoparasitic black holes inside neutron stars

t=0.00 ms t=0.00 ms

WE & Lehner (2019)
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Endoparasitic black holes inside neutron stars

t=1.12 ms t=1.01 ms

WE & Lehner (2019)
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Endoparasitic black holes inside neutron stars

t=1.46 ms t=1.36 ms

WE & Lehner (2019)
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Endoparasitic black holes inside neutron stars

t=1.77T ms t=1.67 ms

WE & Lehner (2019)
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Endoparasitic black holes inside neutron stars

=2.63 ms

WE & Lehner (2019)
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Endoparasitic black holes inside neutron stars

t=3.18ms t=3.08 ms

WE & Lehner (2019)

Pirsa: 20020022 Page 101/107



Endoparasitic black holes inside neutron stars

t=4.03 ms

WE & Lehner (2019)
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Endoparasitic black holes inside neutron stars

t=4.44 ms t=4.33 ms

WE & Lehner (2019)
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Endoparasitic black holes inside neutron stars

t=4.68 ms t=4.58 ms

WE & Lehner (2019)
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Endoparasitic black holes inside neutron stars

t=4.99 ms

WE & Lehner (2019)
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Distinguishing low mass black holes in neutron star
mergers

@ Leading order tidal
" ;” l.(:n_ul o \.\-,  2.00M ef.feCtS are d.egeljerate
Mt or x5 2 :(s”:; with uncertalnty N
equation of state

Electromagnetic
transients may be
different, but still
parameter degeneracy
[see Hinderer et al.

NSNS Ry, (km) (2018), Foucart et al.

(2019)]

Yang, WE & Lehner (2017)
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Conclusion

The age of multimessenger gravitational wave astronomy has
begun, allowing us to explore the extremes of spacetime!

Things to look out for:

@ Many more black hole and neutron star mergers, and thus
more exceptional cases.

@ New probes of fundamental physics.
@ The unknown unknowns.

Rich dynamics can teach us about the fundamentals of strongly
curved spacetime.
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